Finley Cooper 7588 50639

Contents
1 Analysis 4
Background to the Project 4
Current System 4
Prospective Users 4
Interview 5
Diagrams of existing systems 7
User Requirements 8
Objectives 8
Technical Research 9
Problem Modelling 10
Hardware and Software Requirements 10
2 Design 11
High Level Overview 11
Database Design 14
Entity Relationship Diagram 14
Overview of SQL Queries Used 14
Normalisation 15
Cascade 15
Data Flow Diagrams 16
Level 0 16
Level 1 16
Level 2 (Focused on the Backend) 16
Data Structures 17
User Interface 19
Prototype Screen Designs 19
General Design and Accessibility 23
Algorithms 24
Elliptic Curve Signing Algorithm 24
Alpha-Beta Pruning 28
Board Hashing 29
Adding Positional Weaknesses 30
Move Generation Algorithm 31
Piece Counting Algorithm 32
Hardware and Security 33
3 Testing 34
Test Plan 34

[\

Finley Cooper 7588 50639

Test 1 - User interface for the board 36
Test 2 - Attack Generation 38
Test 3 - Move Generation 40
Test 4 - Engine 43
Test 5 - Cryptographic functions 44
Test 6 - Login and Signup form 45
Test 7 - API and Authorisation 47
Test 8 - Custom Game and Review 48
Test 9 - Adventure Mode 49
Test 10 - End-to-End testing 50
Screenshots 53
Testing video links 57
Transcriptions 57

4 Evaluation 59
Changes Due to Feedback 59
Project Objective Evaluation 59
Possible Improvements 60

5 Code 62
File Hierarchy Diagram 62

File Descriptions 64
Cover Sheet 67
Appendix 69

Finley Cooper 7588 50639

1 Analysis

Background to the Project

With the recent boom in popularity of chess in the last couple of years, there has been an increase of
demand for tools to help people improve in the game. However, many of these tools are
computationally expensive, and therefore are locked behind paywalls and subscriptions such as
chess.com’s game analysis system. My NEA will be a clear-purpose web application that provides an
analysis of the user’s weaknesses and adapts the computer playing against the user to help the user
improve, overcoming the issues of expensive computation by analysing positions in the user’s own
browser.

Current System

There are many options available to people trying to improve at chess, outside of just playing against
people. Automated tools include:

e Revision and memory tools to help the person learn checkmating patterns and opening lines.
e Puzzles to improve tactic spotting.

Those two will be out of scope of this project, what I will looking at to focus on and improve are:

e Playing against engines.
e Analysis of past games.

Most chess websites provide systems to play against engines at different strength and some provide
the ability to change between different ‘personalities’ which will then change the playing style of the
engine. However, many of these ‘personalities’ are not free, and there is a limit of how much
customisation can be done. For my project, I don’t want to make a super-powerful engine, but rather
focus on a high level of customisation which is much more important for people learning chess below
the average skill level. To get this high level of customisation I will have to forfeit some of the speed
and therefore depth in the engine.

Secondly, instead of providing a game-by-game analysis of each game, I instead want to analyse the
entire history of games played by the user on my application. This should give more insight to the
playing style and positional errors made by the user in their chess games, as a game-by-game analysis
causes the user to focus on tactics they are missing instead of the big picture.

These changes make my project not a replacement for existing chess analysis programs, but
something than can be used alongside traditional analysis programs.

A major problem suffered by chess analysis programs are the price of analysing games. Chess engines
require a lot of processor time on the server, which is expensive, explaining the restrictions
implemented on the number of games that can be analysed on many websites. To get around this, and
provide more independence for the client, the engine will be run in the web browser.

Prospective Users

This project is designed for people who know at least the basics of chess, and hopefully have played
some chess online, so the website will feel familiar and not overwhelming, and the user should

Finley Cooper 7588 50639

understand basic terms of chess analysis. The engine will not be suitable for advanced chess players
as it the engine won’t have a depth of analysis high enough to beat someone who has played chess for
a long time (due to the computational limits of browser-based analysis).

For people who have just learnt chess, a playstyle analysis program will not be as helpful, as newer
chess players tend to have more sporadic playstyles which have less use analysing.

The targeted audience for this website is younger people (around 12-17 years old) who have picked
up chess in the recent boom of chess popularity online in the last couple of years and are struggling
with positional issues in their chess games. I will use a group of people at my school’s chess club to
evaluate this project at range of skill levels.

The website will only be able to run on desktop computers, as mobile phones are less likely to have
the hardware and modern browser features to allow analysis in the browser.

All users will interact with the website as clients and will play games on the site against the engine, no
matter how advanced they are. The user will be able to adjust the engine manually.

As the project might be used by younger users, the design of the website must be simple and intuitive
to use and should be approachable by people who have never played chess online. The application
should also meet accessibilities requirements for a website, by using semantic HTML elements and
ARIA tags when that is not available.

The project should be designed in a way so that it can be run by a client who doesn’t have too much
experience with computer science. Possibly clients include schools, a group of friends, or a parent,
who could run their own instance of the web server, providing the system to students, other friends, or
children.

Interview

Interview with a friend who is very good at chess. The interviewee also has experience working with
younger children, as he tutors younger students weekly, so he made a perfect candidate to have a
technical discussion about what the system could provide my users.

Me: When younger children are using a learning tool for a game such as chess, what kind of features
will keep them engaged specifically for a game like chess?

Answer: Definitely the most important [feature] is a sense of competition. [The users] wanna show off
to their friends with a wide range of metrics. It’ll also be cool to see some sort of horde mode, or
game with some kinda objective.

Me: Any other ideas?

Answer: [The existing systems] aren’t user friendly, and most kids, you know, get confused from
messy apps.

Me: With the actual bot, what could I provide which existing computers don’t?

Answer: [The engine] could, like, be really, really aggressive, and just start a massive attack on your
pieces or be really passive and just keep its pieces close, cause even, like, chess.com doesn’t have that
much really customisation, they all kind of feel the same.

Finley Cooper 7588 50639

After the preliminary interview, I created this table of potential ideas to give to the interviewee in a
secondary interview.

Me: Rate these features on a scale of how often you would use them. (I present the interviewee with a
table with headings Never, Rarely, Sometimes, Frequently, Always, for him to tick)

Never Rarely Sometimes Frequently Always

Survival
Mode with (Ticked)
endless levels

Adventure
story-based (Ticked)
mode

Manual
adaptation of
engine
playstyles

(Ticked)

Archive and
view past (Ticked)
games

*The interviewee asked for clarification on what an ‘Adaptive Engine’ was. I told him it was an
engine which changed how it was playing within the same game.

=)}

Finley Cooper 7588 50639

Diagrams of existing systems
Left: Flow chart of the game-by-game analysis system on a Lichess/Chess.com-like website

Right: Data Flow Diagram of the analysis side of a Lichess/Chess.com-like website

User plays a game

Requestto
analysis Syzygy tablebase and
Bo t . i
e Do nothing game opening book

Game to analyse

—___Fetch Game(s

User wanting to
analyse

F h positi Daabase User plays game
08 ORCR POSERNL | Play the user's move Interface ¥
calculate the on the board
evaluation User Auth Token
UserlD
l v
Calculate the Calculate the new User and Game Database
difference and sum [« evaluation
all the differences
4 (Note that the two “Web Server’ processes are the same
Divide by the number process, two are shown in the diagram to prevent too
of moves much overlapping of arrows and processes)

Finish

Finley Cooper 7588 50639

User Requirements

Required Features

e Provide a platform that allows the user to play a game of chess against the computer.

e Develop an engine strong enough to beat existing engines of 1000 ELO at least 95% of the
time.

e Allow the user to change the playing style of the engine, such that the change is noticeable to
all users.

e Allow the user to decrease the strength of the engine so that the user can achieve a 50%-win
rate against the engine.

e Store the past games of the user in a database on the server.

e C(Create an authentication system for logging in and signing up to the website.

e C(Create a platform suitable for a younger audience (simple interface and minimise complexity
for the user)

e Add a campaign to guide the user through different playstyles.

Features that should be added

e Adjust the playing style of the engine so it plays human-like.

e Provide the user with an analysis of which playstyles they played best against in a shareable
format.

e User customisation to the site and storage of preferences to appeal to younger people.

Desirable Features

e Add the ability to look back at past games and generate a shareable link to share to friends.
e Email verification for logging in.
e View games after they have been completed.

Features that will not be added

e Higher level search algorithms such as Monte Carlo tree searching.
¢ Any form of neural networks or other types of Al
e Move-by-move analysis of the users’ games.

Objectives
The timings for each group of objectives should be followed, but some slack is expected. Some
objectives overlap, as they may be completed concurrently with other objectives.

1. Create a signup and login system. (After Mocks — End of School Year)

e Ifthe user isn’t logged in, they will be redirected to the login page.

e The user will have to input an email, a name and password.

e The user’s password must be complex (special character, uppercase, lowercase, at
least 8 characters) for the form to be submitted.

e The user will have to re-enter their password to confirm it has been inputted correctly.

e The user’s email must be unique.

o The user’s password must be stored using a suitable hashing and salting algorithm.

e When the user logs in, the server will give the user a cookie which has been signed by
the server using a suitable dual key algorithm.

e Checks should be done on the user data client-side and server-side to prevent
unnecessary requests and from the user from bypassing checks by sending their own
requests to the server directly.

Finley Cooper

7588 50639

2. Create a customisable chess engine. (Start of Summer holidays — 10" September)

The chess engine must be played within the browser, locally.

The engine must use a low amount of memory and CPU time to prevent the site from
freezing.

The engine must play to a standard to beat players up the level of myself (~1200
ELO).

The engine must be able to play down to users who have only recently started playing
chess, and still give even games.

More customisation settings should be given, at least an aggression setting and a
setting for how well the engine positions its pieces.

There should also be a GUI which provides the user with an interface to adjust the
settings of the engine.

The engine should also have an adjustable ‘depth’ value.

3. Create an adventure mode using the engine customisations. (1% September — 1% October)

The user should be able to play an adventure mode with a short story interspliced
with chess games which act as battles/fights/opponents.

The adventure mode should be easy for most players, but losses should be expected
sometimes.

The adventure mode should contain the user’s display name in speech.

The user’s current level should be saved automatically when the browser is closed, or
the user switches computers.

Once the user finishes the adventure, they should have access to a statistics sheet.
The sheet should be downloadable to the user for sharing.

All games played on the adventure or otherwise should be stored on the server and
reviewed by the user at any time move-by-move.

The games should be shareable to non-logged in users, but only viewed if they have a
shareable link created by the person who played the game, or they are the person who
played the game.

4. Create a REST API between the database and the website. (15" September — 5™ October)
The API should be authenticated and authorised for each resource which needs to be kept
protected.

The API should allow the user to change their name or delete their account if requested.
The API should response to invalid requests with the correct HTTP 4xx error in most
cases and all common cases (it’s usually unreasonable to not run into any 5xx errors when
dealing with many routes).

The API should allow an admin user to access all routes on the server and all data in the
database (apart from password hashes and salts, these should be NEVER sent on external
HTTP requests).

The API should make SQL requests to a database for the appropriate resources.

Technical Research

Almost all my research was conducted on the website https://www.chessprogramming.org which
provides an extensive list of algorithms for creating a chess engine in many ways and contains the
basic ideas for data structures which I based my TypeScript implementation on some of the ideas
talked about on the wiki.

For setting up the Docker container, I used the documentation on the Docker website here
https://docs.docker.com/desktop/.

Similarly, I used the Flask documentation for the Flask app https://flask.palletsprojects.com/en/3.0.x/.

Finley Cooper 7588 50639

Problem Modelling

Diagram showing the general systems which will be included in the project.
Server
Docker Container

REST API for -

dynamic content Request/Response User - Web Browser

React App for
dynamic content

Database

Basic Entity Relationship Diagram for the database for the most important tables

Games

User Links

Hardware and Software Requirements

I want to keep hardware and software requirements for the client and the end user as low as possible
to ensure a range of users can use the project and a range of clients can host the project. The user must
have an up-to-date browser to support some of the features that my project uses, but this should
generally be met by almost everyone. As part of my objectives, I must not use anything which
restricts the project to a specific desktop browser, or any feature which is only very partially
supported. For the client, I would like for the project to be hosted in the cloud, preferably cheaply,
below a few pounds a month running 24/7.

10

Finley Cooper 7588 50639

2 Design

High Level Overview

The chess learning site is comprised of two main parts. The frontend and the backend. The backend
will handle communication with the client (frontend) using a REST API, mapping the HTTP methods
to the database CRUD operations. The backend will also handle authentication logic, including my
own token signing algorithm for authentication and password salting and hashing. The backend will
be written in Python, using the Flask framework, as I’ve used it in the past, with a serverless SQLite
database as the webserver won’t be receiving enough traffic to necessitate a dedicated database server.
I will the use gunicorn as the WSGI server for my Flask app which acts as a gateway for requests.

The bulk of my project sits in the frontend, which is a React App, written with TypeScript with class
components. [opted to use TypeScript over JavaScript, as TypeScript is strongly typed, so I will run
into less errors caused by mismatching types as my project grew larger, especially for the more
delicate code in the chess engine. Routing for the React app will be done in browser for a smoother
experience, as I’m not worried about the SEO falloff for using a single-paged app. The chess engine is
fully separated from the React app, and the only communication between the engine and the React
app is through the Engine class which acts as an interface between the two modules.

The frontend and backend are run as Docker images, with the backend container running the Flask
app and the WSGI server. The backend container first builds the React app, and then starts NGINX
which proxies API traffic to the backend container, and serves the static files of the React app. [use a
persistent volume for the SQLite database and expose the NGINX server to the host machine’s HTTP
port (80), where the project can be accessed. I chose to break the project into Docker images so |
wouldn’t have any operating system differences, as I developed the project on my home Windows 11
computer, but when I needed to make the project accessible to anyone’s computer, I hosted the project
on a Google Cloud Compute Engine e2-micro VM, running on Debian. Using Docker also makes
managing lots of services much easier, so I chose to use it for this project.

High level project architecture diagram — Excludes DNS routing and the Cloudflare proxy as they
are irrelevant to the project itself.

Server (GCP e2-micro instance)

Docker Container

Frontend Image

HTTP
| Static/ \ Port 80 | Port 80/443 request
React Files < routed <€
. NGINX .
‘ Buld | le e Client - Web Browser
Proxy pass HTTP
on port 5000 response
Backend Image >

4

Flask Gunicorn
App ‘ ,

A

SQLQuery(SQLite
Volume

11

Finley Cooper

Class Diagram of the Engine module

7588

50639

Engine
+board: Board
-customisation: Customisation
-moveHistory: Array<Move>
+fromStarting| it isation: Ci
+moveHi ingToUCl(string; string)
+getCustomisation()

- int)

+getBestMove()
+computerMove()
+getMovelListString()
+playerUCIMove(from: number, to: number)

-sideToMove: int
-sideToMovelndex: int
-pastBoards: Array<number>

-epFile: int

o

-int Move
é> -pieceCapturedPlyBefore: number -destinationSquareMask’ int
y: -sourceSquareMask: int
‘SquareCollection
_biboard: int -square: Array<BasePiece> -flagMask: int
+getBitboard() T +romCharacteristics(dest int, source: int, capture: boolean,
ionOccurr doublePawn: boolean, ep: boolean, castie: int, promotion: int
) +hasPositiont edBefore() doublePawn: boolean, boolean, castle: it 'omotion:
+add(square: int)
. +getCollections() number)
+remove(square: int)
+or(collection: SquareCol jon) +getSquares() +datum: int (immutable)
etSideToMove() y Destinati
+and(collection: SquareCollection) i ; 2
i +getSideToMovelndex() +getSourceSquare()
. -updateAllPieceCollection() +getFlag()
+getGameState() ; +toBinaryUCI()
+playUCIMove(from: int, to: int) +toLetterUCI()
-hashBoard() +isPromotion()
. +playMove(move: Move) +isCapture()
: I :
<+unplayMove(move: Move) +isEnPassasnt()
-isSquareAttacked(square: number, attackerColour: number) +getPromotionPiece()
+generateLegalMoves()
+isCheck(sideToPlay: int)
+isCheckmate()
+isStalemate()
+getBoardData()
+generateBinaryUCILegalMoves()
The SquareCollection class is
used by some of the Piece classes +toBinary()
in the getLegalMoves and
getAttacks calculations
Empty Pawn
Class is left empty intentionally 0 +getlL - int, board: Board)
<«
+getAttacks(square: int, blockers: int)
Knight Queen Bishop Rook King
+getLegalMoves(square: int, board: Board) +getLegalMoves(square: int, board: Board) +getLegalMoves(square: int, board: Board) +getLegalMoves(square: int, board: Board) +getLegalMoves(square: int, board: Board)
+getAttacks(square: int, blockers: int) +getAttacks(square: int, blockers: int) +getAttacks(square: int, blockers: int) +getAttacks(square: int, blockers: int) +getAttacks(square: int, blockers: int)

<Abstract>
| BasePiece

+datum: int (immutabie)

+getColour()

+getType()

+isColour(colour: int)

+getColourindex()
+getOpponentColourindex()
+getLegalMoves(square: int, board: Board)

“+getAttacks(square: int, blockers: int)

+isDi)

12

Finley Cooper 7588 50639

.Hierarchy Chart of React app components — (classes which inherit from React. Component)

Root

o —

BrowserRouter

« /

App
Routes
‘ Review ‘ Home ‘ ‘ Custom ‘ ‘ Adventure ‘ Login Signup Settings History
| l \ | |
| | | | ’
BoardElement CustomisationSlider AdventureResults ‘ Textlnput ‘ Game

1

P
Piece J

L

The light purple components in the long line represent a route in the browser router. [will give a
quick overview of what goes on in each route.

Review — Where the user can view a past game. The route takes the URL query parameters userid and
gameid, which must be given to make the API request to the server of the game. We need the
BoardElement class so we can look through the moves on the board.

Home — The user can select from the Adventure, Custom, History, and Settings routes.

Custom — The user can change the settings for the engine, and then play a game against the engine.
We need the BoardElement and the CustomisationSlider elements for this.

Adventure — This is the main feature for the project. The user plays through a short story intertwined
with chess games against enemies. Once the user completes the campaign, they can see their statistics
displayed in the AdventureResults component. We will also need the BoardElement component for
playing the games against the enemies.

Login — A form to login. The user will be redirected to this route if they are not logged in. The
TextInput component is needed for the form.

Signup — A form for signing up to the website. The TextInput components are also used in the form.

Settings — A route where the user can change their display name (which they will input in the
TextInput component) or delete their account.

History — A route showing a list of all the games the user has played. Each element in the list is
represented with a Game component. A link to the Review route of that game can be clicked for each
game.

13

Finley Cooper

Database Design

7588

Entity Relationship Diagram

UserCampaign

PK

Campaignid int NOT NULL AUTOINCREMENT

FK

FK

Userid int NOT NULL

Levelid int NOT NULL

50639

Links

Users

PK

Userid int NOT NULL AUTOINCREMENT

Email TEXT NOT NULL

PasswordHash TEXT NOT NULL

AuthenicationLevel int NOT NULL

Name TEXT NOT NULL

CampaignLevels

PK

Levelid int NOT NULL AUTOINCREMENT

Text TEXT NOT NULL

BattleSettings TEXT

GameHistory

PK

Linkid int NOT NULL AUTOINCREMENT

Gameid int NOT NULL AUTOINCREMENT

Userid int NOT NULL

Levelid int NOT NULL

Campaignid int NOT NULL
MoveList TEXT NOT NULL
GameResult TEXT NOT NULL
DatePlayed TIMESTAMP NOT MULL
CustomSettings TEXT NOT NULL
HumanPlaysAs int NOT NULL

Winner int NOT NULL

FK

LinkURL TEXT NOT NULL
CreatedAt TMESTAMP NOT NULL
ExpiresAt TIMESTAMP NOT NULL

Gameid int NOT NULL

Overview of SQL Queries Used

Question marks represent values which have been parameterised.

This query creates new links in the Link table. The LinkURL is a randomly generated Base64 string,
which is inserted alongside timestamps which control when the Link expires. By storing the link in
the database, the actual URL doesn’t contain any information about the user or game, so when the link
expires, it becomes useless. The SQL DATETIME function creates a UNIX timestamp that is one day
ahead of the current time, and the CURRENT TIMESTAMP variable inserts the current timestamp.

INSERT INTO Links (LinkURL, CreatedAt, ExpiresAt, Gameid)
Values(?, CURRENT_TIMESTAMP, DATETIME('now', '+1 day'), ?)

This is the query used to get information for a redirect when a user navigates to a shareable link
(starting with /s/). The query uses an inner join between the Links table and the GameHistory table
through the Game’s ID, to get the user id of the person who shared the game for the redirect to
/review?gameid={game id here}&userid={user id here}

SELECT Links.*, GameHistory.Userid

FROM Links

INNER JOIN GameHistory
ON Links.Gameid = GameHistory.Gameid
WHERE Links.LinkURL = ?

14

Finley Cooper 7588 50639

We select users’ information from the user table in the login process to check the password hash, in
the signup process to check for an existing account, and every single time the website is loaded. I also
use an INNER JOIN to the UserCampaign table to get the current level id, so when the user plays the
adventure mode, the API request will query the current level correctly. The user’s id is also used for
all API queries relating to them, so the client must have this information about the user when the
website is first loaded.

SELECT Users.*, UserCampaign.Levelid

FROM Users

INNER JOIN UserCampaign

ON Users.Userid = UserCampaign.Userid

WHERE Users.Email = ?

This is a simple query just used to update the user’s adventure level when they beat the previous level.

UPDATE UserCampaign SET Levelid = ? WHERE Userid = ?

This query selects all columns from the game history under one user’s identifier and orders them from
most recent to least. This is used in the API request for the History route.

SELECT * FROM GameHistory WHERE Userid = ? ORDER BY DatePlayed DESC

Normalisation

I’ve removed all partial and transitive dependencies in the database, and all non-key attributes depend
on the primary key, the whole primary key and nothing but the primary key. It however can be argued
that some of the data is not atomic. The GameHistory.CustomSettings and
CampaignLevels.BattleSettings both contain stringified JSON strings, which obviously is not atomic.
However, the data is not being queried within the JSON string, and [don’t want to have to give the
backend an understanding of the frontend, as that would remove a lot of the encapsulation between
the frontend and backend modules, which I value as more important than the atomicity of the data,
especially when the data does not have to be read or modified in the backend.

Cascade

The only record which would be reasonably deleted with a DELETE query would be a user record.
Cascade delete should be toggled for the UserCampaign table, as the campaign is meaningless without
the userid being valid. The GameHistory records for the deleted records should also be deleted, which
then would delete the links in the Links table which correspond to the deleted games.

15

S0Lite Connection

-
.

HTTP
> Flask App

>
>

Hashing

Hashed Password

Finley Cooper 7588
Data Flow Diagrams
Level 0
"y
HTTP
End-user
Web Browser
L oy
Web Server
Admin
Web Browser
w,
Level 1
enausee | T HTTP Gunicom WSGI
Web Browser Server
NGINX
Reverse
i o | HTTP Proxy Query assets on disk <>
< > Static
‘ Web Browser
‘ React App
Level 2 (Focused on the Backend)
| Etliptical |
| Curve Signer |
Signed Token to
Token be signed
Incoming ~ .
HTTP' E— Request Tm"
w{ e obect oy b |
Request o
Object + token .
/ N | Plaintext password | p,
[Authorisation | ——> Signup |
| Checker |
Resource or
Resource
Query
Query for resource
API Resource, or resource
| Handling/ <
Formatting /

Adventure Story Text
and Battle Setttings

SQLite Connection

50639

<

16

Finley Cooper 7588 50639

Data Structures

Most data in the engine is stored using integers, because we are restricted by the browser with how
much memory we can use, and we get ability to use very fast operations such as bitwise AND, OR,
XOR, and left and right shifts, which I use extensively in the engine, especially for functions which
could be called tens of millions of times. Here is a list of some of the opaquer data structures used
exclusively in the engine.

SquareCollection — Bitboard (bitfield)

This class is an interface in front of a 64-bit unsigned integer which represents some attribute for each
of the square on a chess board. This is used in the <Board>.collections arrays, where each side of the
board an array of SquareCollections for each piece representing if a specific piece is present on each
square. This is used on top of the <Board>.squares array, as we can use bitwise operations for
example to calculate captures, by ANDing the bitboard of attacks and the bitboard of enemy pieces,
which is much faster than looping over the entire list of squares. Before when I just had the squares
array, the function for calculating if the king was in check would be called millions of times in the
PEREF tests, and it would be incredibly slow, as the entire board would have to be iterated over each
time. With the bitboard, pins can be calculated easier, so less psuedolegal moves must be verified by
playing them on the board, and the bitboard can calculate if the king is in check by just ANDing the
attacks of enemy pieces with the bitboard of the king.

Move — Bitfield

Moves are encoded into a 16-bit unsigned integer using the bitfield described in the Encoding Moves
section of the chessprogrammming wiki. This reduces their memory consumption and allows for easy
calculating by using binary masks for looking at a specific property of a move. The corresponding
move for each flag can be found on the wiki, which I have used.

Destination Square Source Square Flags

010 | 010 | 0|0 iaianinisiiy ¢ 0 0 |0

Piece — Bitfield

Again, I'm using a bitfield for the piece, as it allows for easy comparison, and helps with the hashing
of the board, as each square has a binary value for each piece. The 3 least significant bits are used to
store the type of the piece (queen, king, bishop, etc.) and the 4™ bit represents if the piece is black, and
the 5 bit represents if the piece is white. This allows for easy checks if a piece is a specific colour, as
we can use the mask Ob11000 which gives 8 if the piece is black and 16 if the piece is white and O if
the square is empty.

Game State — Bitfield

When a move is played on the board, important attributes of the board which are about to change are
stored into the game state, which is then stored in the game state stack. This allows the moves to be
unplayed, and decreases the memory used by the board if we used a larger data structure like a
dictionary. The attributes we store are the current side to move, the file which en passant can happen
on, castling rights, and the piece captured the move before. With all this information we can unplay
the entire history of moves played on the board.

17

Finley Cooper 7588 50639

Past Game States/Boards — Stacks

The past game states and past board hashes are stored in a stack. The same board is used while moves
are played on the board while the engine is calculating, so the engine must be able to reverse all the
moves played. The past game states stack allows this by storing the most recent game state on the top
of the stack. If a new move is played, the current game state is pushed on the top, and if a move needs
to be unplayed, then the top game state is popped and set as the current game state. The past boards
stack also works in a similar fashion, but instead of holding the game state, it holds hashes of the past
board positions, which are used to detect draws due to repetition. A stack is the best structure as
searching for the most recent game state is always on the top of the stack, so it can be accessed in
constant time.

Squares — Array

One way the board is represented is through a 1D array which represents each square on the board.
Using a 1D array over a 2D array gives us more freedom to pre-program the ‘offsets’ for each piece’s
movement. For example, to move a white pawn up a square, we add 8 to its index, and a capture
represents the offsets of 7 and 9 for the left hand and right hand captures accordingly. We can also
give repeated offsets of multiples of 8 and 1 for sliding pieces up and right accordingly, and 7 and 9
for the leading and adjacent diagonal. When pieces wrap around, we introduce checks to prevent this,
for example a pawn on the 24th index cannot capture a piece on index 31. The array has a fixed length
of 64, with each element being a 5-bit integer representing a piece using the bitfield discussed earlier.

Collections — Array

This is the second way pieces are stored on the board, which uses a 2D array and stores, not the pieces
and square indexes, but a bitboard for each type of piece. Each 64-bit bitboard has a ‘1’ on the squares
where the piece it’s representing exists, and a ‘0’ otherwise. We have a bitboard for the white king,
black king, white pawn, black pawn, etc. for all the pieces. There is also an additional ‘white all’
bitboard and ‘black all’ bitboard which has a ‘1’ if any piece is on the square and ‘0’ otherwise. Using
the methods on the Piece classes and SquareCollection class, we can write very clear code even
though the collections have been abstracted so much. The ‘Pieces’ enum lets us index the Collections
array with identifiers instead of just integers, making the code very readable.

Removing a piece from the collections square after a piece has moved.
Collections[piece.getType()][piece.getColourindex()].remove(move.getSourceSquare())

Adding a Rook to square 3 after kingside castling has occurred (white).
Collections[Pieces.Rook][Pieces.white].add(3)

Calculating captures for a non-blockable piece (king, knight, pawn) after attacks have been
calculated, using the SquareCollection’s bitwise AND method with the opponent’s pieces bitboard.
Captures « Collections[Pieces.all][OpponentColourIndex].and (attacks)

18

Finley Cooper 7588

User Interface

Prototype Screen Designs

50639

Home Route — This is the home screen where the user can choose from the given options on what to
do. It’s a simple layout, I’ll make SVGs for each option, so they feel more interactive. I’'m centring
the options vertically so it’s clear that this is a home page.

[eReNe]

Chess NEA

[Adventure ' (Custom Gome J

Title here

Game Hk5+ory J 5e++inﬂ¢5 J

Custom Route — This is place where the user creates the custom game by moving the sliders. I don’t
know how many sliders I’ll have, but it’ll be about 3-5.

000

Chess NEA

P‘Iay

19

Finley Cooper 7588 50639

Settings — Settings for changing the user’s name and deleting their account. I might have more
options, but these are the main ones I want to include.

000 Chess NEA

Se-Hinﬁ';

u nome here

Change Nick E’} Delete Account

History — This is the route where the user can see a list of games played on their account. Clicking the
review text will redirect them to the Review route. The top game should be the most recent.

000 Chess NEA

Past Games

Win by Checkmatel
White | 23 Moves Review | Share
i
Wr\l?yCheckmafe!
Black | 33 Moves Review | Share
4
Loss by Checkmate
White | 26 Moves | Review | Shart
4

20

Finley Cooper 7588 50639

Review/Adventure/Custom playing game — These are the screens which contain a chess board. In
the case of the review route, the board cannot be modified, only stepped through move-by-move using
the Next Move button. With the adventure route, the text on the right will show the opponent and the
user’s name. In the custom mode none of this will be shown. An indicator of checkmate or stalemate
should appear on the top left when the game ends.

000 Chess NEA

Opponent nfo here
(orly For adventure)

Display name here
(orly For adverture)

TR S S S
|

Adventure going through the story — This screen will be visible when the user is playing the
adventure mode and reading the story. The continue button will advance to the next piece of text, and
eventually to a ‘fight’ (a chess game).

000 Chess NEA

APt A W ek el

B e e e e

21

Finley Cooper 7588

50639

Signup — This screen is for the signup form. I’ve omitted the details to fill in, but they will be the
email, name, password, and maybe one more. There might be a terms of conditions button for a terms

and conditions and private policy to comply with data processing laws and similar legislation.

000 Chess NEA

Login — Similar to above, but the two text boxes will be email and password. All these forms are
centred both vertically and horizontally, as it makes the site seem more interactive, and suits better for

a larger range of screen resolutions.

[eNele} Chess NEA

Loain

22

Finley Cooper 7588 50639

Adventure Finished — The statistics sheet. ’'m not sure what data I’'m doing to collect (probably the
same as the sliders on the Custom route). I also want to add a counter of some sort (games, moves,
time), so the adventure becomes more like a competition, encouraging people to download the sheet
and flaunt it to their friends.

000 Chess NEA

You Wirl

Download

General Design and Accessibility

As my project is aimed towards a younger audience, it is important the designs are modern, but also
simple. I’ve chosen the Varela Round Google Font, as it is very readable, whilst still being distinctive.
I’m also going to go on the larger side for fonts and buttons, to make the system easier to use, and
provide responsive changes when the user presses a button by changing the button’s colour, so it’s
clear that it has been pressed. I also will have a loading screen which is just the words “loading...”,
which will display if a route is taking a long time to lazy load, or if the client is waiting for an API
request and it has no content to show.

I added the HTML attribute tabindex to the buttons on the Home page, the buttons on the Custom
page, and the ‘share’ text on the History page. I had to do this as all these elements were generic
elements which were clickable, so adding the tabindex property would allow users to navigate and use
the website only using a keyboard.

More changes will be made the interface in testing if any of my testers have problems navigating the
system, although I will be more hesitant to make changes which mean rewriting a large part of the
routing code. I have no accessibility plans for playing the moves on the board without a mouse, as
click and drop behaviour alongside drag-and-drop behaviour is out of the scope of this project.

23

Finley Cooper 7588 50639

Algorithms

Elliptic Curve Signing Algorithm

An elliptic curve defined on the field F,, is represented by the equation y* = x* + ax + b (mod p)

The general steps for the signing algorithm are described in the US government document here
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf.

As I'm dealing with sensitive user information, it’s important that I implemented the algorithm fully,
as the document only outlines general guidance for the mathematical steps to ensure security, not the
actual implementation which I created. The curve I used (secp256r1) was chosen from the document
here http://www.secg.org/sec2-v2.pdf, but my implementation extends across all prime fields with
b#0 and order less than 2°'%.

The point at infinity is the point at which the gradient of the curve at the point diverges to infinity.
This will lead to divide-by-zero errors in our calculations, so instead we define the point at infinity to
be (0, 0), which does not lie on the elliptic curve given b#0. We won’t think about the curve, instead
consider the algebraic group of points on the elliptic curve generated by applying a generator point to
itself repeatedly using elliptic curve point addition. The generator point and the order of the group is
given in the document, I only must worry about implementing the elliptic curve scalar multiplication.

To do scalar multiplication on a point, we just conduct point-to-point addition repeatedly.
sG=G+G+G+ G+ -+ G (s times)

This results in s total operations, giving the algorithm a time complexity of O(s), which is too slow, as
our scalar, s, ranges from 0 to 22°°, Instead, we can use the double-and-add algorithm, where we split
the addition into powers of two. We can do this as associativity is guaranteed by the group axioms.
Below is an example with s = 59.

59G = G+ 2G +8G + 166G + 32G

This means we are computing the same number of operations as the bit length of the scalar, s, giving a
time complexity of O(logx(s)), which is much more suitable for larger numbers. We can implement
this by creating a binary mask which represents a power of two and sliding the mask from the LSB of
the scalar to the MSB, and doubling a point with each slide, adding this point onto the point total only
if the mask matches at the specific bit of the scalar.

Pseudocode - & represents the bitwise AND operation, << represents the binary left shift operation
and +¢ represents elliptic curve point addition, and O represents the point at infinity

SUBROUTINE scalar_multiplication(Scalar, point)
Mask « 1
Doubler < point
Total « O # Point at infinity as V pe(g), p + O =p

WHILE Scalar >= Mask

IF Mask & Scalar THEN
Total « Total +¢ Doubler

Doubler < Doubler + Doubler
Mask « Mask<<1

ENDWHILE

RETURN TOTAL

ENDSUBROUTINE

24

Finley Cooper 7588 50639

The point-to-point addition, given two points (A, B) and (C, D), can be calculated using these two
equations well known elliptic equations.

X=2-A-C and Y= 14— AX-B

Where 4 is the gradient of the line connecting the two points. These equations only work when the
two points are not group inverses (so A # -C), otherwise the result is the point at infinity (the identity
element). By the identity group axiom, if one of the points are the point at infinity, the result is the
other point unchanged. To calculate the gradient, the simple rise-over-run equation words fine, but if
the points are equal, then we will have to find the gradient using the derivative of the elliptic curve
equation.

y:=x34+ax+b

d
—yZy =3x2+a (using implicit dif ferentiation)

dx
dy 3x*+a
dx 2y

We then can use the three equations above.

Pseudocode — Let O denote the point at infinity. Let % represent the modulo operator. Let /p represent
the multiplicative inverse of two numbers modulo p, where p is the order of the field which the elliptic
curve is defined in.

SUBROUTINE PointDouble(P)
IF P =0 THEN
RETURN P
ENDIF
Gradient « ((3*P.X*2+4+a)/p (2*P.Y))%p
X « (Gradient*2-2*PX) % p
Y « (Gradient* (P.X-X)-PY) % p
RETURN (X,Y)
ENDSUBROUTINE

SUBROUTINE PointAddition(P, Q)
IF P =0 THEN
RETURN Q
ENDIF
IF Q = O THEN
RETURN P
ENDIF
IF P.X = QX THEN
IF P.Y = Q.Y THEN
RETURN PointDouble(P) # Points are the same so just double P
ELSE
RETURN 0O # Points are inverses, so return the point at infinity
ENDIF
ENDIF
Gradient « (P.Y-Q.Y) /» (P.X-Q.X)
X « (Gradient"2-PX-QX) % p
Y « (Gradient* (P.X-X)-P.Y) % p
RETURN (X, Y)
ENDSUBROUTINE

25

Finley Cooper 7588 50639

To do the actual signing algorithm, I implemented the steps on the US government document, using
the functions I have created. Below is the flowchart of the algorithm. The value of n refers to the order
of the group generated by the generator point of the elliptic curve. A similar method is used in the
verify signature algorithm, using the public key instead of the private key, but more checks must be
done, as we are dealing with user input instead. When multiplying a point by an integer, this refers to
elliptic curve scalar multiplication.

Flowchart — Elliptic curve signing algorithm.

Start
Read t-hein Input the
= byt e’; private key
Y
Hash the message

and trim it so it's

smaller than n.
Y

l Generate a

ultiple the generator cyptographically

point by this number random number, k, in
‘ the interval (0, n)

Y

Let ' equal this point
Xvalue modulo n.

Y

Yes
s=((hash+(r* Does either r or s equal
private key) / k) 0? -
modulo n '
l No

Finish (return (r, s))

To generate a key pair, we just choose a random point in the group generated by G, by choosing a
random value in the interval (0, n) (this is the private key) and the point calculated is the public key.
This operation is very hard to reverse, as it reduces to the discrete logarithm problem (as the group
generated by G is cyclic so it must be abelian), just like other encryption algorithms such as RSA.

Pseudocode — Key pair generator. Let x represent elliptic curve scalar multiplication, G represents
the generator element.

PrivateKey < Random.Range(1, n)
PublicKey « PrivateKey x G

OUTPUT PrivateKey
OUTPUT PublicKey

26

Finley Cooper 7588 50639

For checking that a signed message has indeed been signed by the private key given, we can use the
public key to check that the signature is valid for the message given. This subroutine is in the
EllipticCurve class, which has read-only attributes defining, a, b, p, n, and such.

Pseudocode — Checks that the binary message matches the signature, given the public key. Let x
represent elliptic curve scalar multiplication. Let /, represent the multiplicative inverse of two
numbers modulo n. Let +g represent elliptic curve point to point addition.

SUBROUTINE VerifySignature(Binary, Signature, PublicKeyInt)
The Public Key is actually a point with the first nBitLength bits representing the x
coordinate and the last nBitsLength bits representing the y coordinate
PK « (PublicKeyInt >> nBitLength, PublicKeyInt & ((2*nBitLength -1)))

IF PK =0 THEN
RETURN FALSE
ENDIF

Check that the public key is on the elliptic curve in the field modulo p
IF (PK.Y **2) % p # (PKX**3 +a*PKX + b) % p THEN

RETURN FALSE
ENDIF

Check that the the order of the Public Key divides n over F,
IF n x PK # PK THEN

RETURN FALSE
ENDIF

Retrive the signature point (1,s) from the signature
R « Signature & (2”nBitLength - 1)
S « Signature >> nBitLength

Checkr, s € (0, n)

IFR<10RR>=nORS<10RS>=nTHEN
RETURN FALSE

ENDIF

Calculate and trim binary message hash into an integer
Hash < INT(SHA512(Binary)) >> (HashLength - (nBitLength + 1))

Now all parameters are safe, we can reverse the signing algorithm
S1« 1/sS

U « (Hash*S1)%n

V< (R*S1) %n

Rrest & (U x G) +¢ (V x PK)

IF R = (Rrese.X % n) THEN
RETURN TRUE
ELSE
RETURN FALSE
ENDIF
ENDSUBROUTINE

27

Finley Cooper 7588 50639

Alpha-Beta Pruning

To find the best move in a position, we get all the moves in the position, and then play each move on
the board. This is repeated recursively up to some depth value, where the board is then evaluated. To
decide which branch of the move tree to follow we use the minimax algorithm. As chess is a zero-sum
game (everything good for us is bad for our opponent and visa-versa), we are trying to maximise our
own evaluation, while minimising our opponent’s evaluation. Doing this by checking every node, we
will have to check, m branches per each new branch d times, where m is the number of moves in a
position, and d is the depth. This gives a time complexity of O(m?). We can optimise this by using
alpha-beta pruning, where we ‘prune’ (stop searching) in branches which have a guaranteed worse
evaluation than the current best move. The alpha value represents the best evaluation for the
maximising player, and the beta value is the best evaluation for the minimising player. In the worst
case, we never prune any branches (this would happen if we started searching for moves from worse
to best). In the average case, half of the branches will be cut, giving a time complexity of O(m%?), but
we can order the moves by looking at captures of high value pieces first, to increase alpha and
decrease beta quicker, giving a better-than-average time complexity almost every time. To sort the
moves, we use insertion sort, as it has the one the best performances for arrays with about 15
elements, and also sorts the moves in place, giving a space complexity of O(1).

Pseudocode — Slightly different than the code in Search.ts. Doesn’t include the customisation or the
simplifyPosition function, only the alpha-beta pruning code. ‘Infinity’ represents the number which
will return ‘true’ in the inequality, Infinity > x, for all x.

bestMove < Move(0) # Empty dummy move
CONSTANT CHECKMATE_EVAL « -99999999999
maxDepth « 4

SUBROUTINE SearchDepth(board, depth, «,)
IF depth = 0 THEN
RETURN EvaluateFunction(board)
ENDIF
Moves « board.generateLegalMoves()
IF LEN(Moves) = 0 THEN
IF board.isCheck() THEN
Adding the depth means the computer evaluates quicker checkmates
worse than slow checkmates
RETURN CHECKMATE_EVAL + depth
ENDIF
RETURN 0
ENDIF

EstimatedMoveOrder < sortMoves(board, moves)

FORi <« 0 TO LEN(EstimatedMoveOrder) - 1
Move « Moves[EstimatedMoveOrderf[i]]
board.playMove(Move)
EVALUATION « -1 * SearchDepth(board, depth - 1, -3, -a)
board.unplayMove(Move)

IF EVALUATION >= (3 THEN

IF depth = maxDepth THEN
bestMove « move

28

Finley Cooper 7588 50639

ENDIF
RETURN B
ENDIF

IF EVALUATION >= a THEN
IF depth = maxDepth THEN
bestMove <« move

ENDIF
o < EVALUATION
ENDIF
ENDFOR
RETURN «
ENDSUBROUTINE

searchDepth(board, maxDepth, -Infinity, Infnity)

OUTPUT bestMove

Board Hashing

A simple hashing algorithm to detect draws in the Past Game stack is employed. The past board stack
shouldn’t be long, only very rarely over 100 elements long. The limit for bitwise operations in
JavaScript is 32 bits (without using the much slower Bigint type), which gives us 2% possible hashes,
making collisions almost impossible. However, we want to make sure that the hashing algorithm is
chaotic, so slightly changing the initial conditions greatly changes the output, while still being
deterministic. This is because the boards that we are hashing are very similar as only one move
separates a pair of boards. We’ll employ an XOR hashing algorithm, shifting each piece value by the
index of the square it’s currently on. We will have to binary shift the index to the left by one, as the
maximum value of the index is 63, which will make the hash too big at 2%. Now shifted, the
maximum value is 31, which makes the hash have a size of 23!, within the limit. We set the hash
initially to the board’s game state, so that contributes to the hash also.

Pseudocode — Actual code uses an array reduce function but results in the same output. Let
represent the XOR operation, ‘<<’ and’ >>’ represents left and right shifts accordingly.

Hash « BoardGameState

Index « 0

FOR Piece IN BoardSquares
NextHashPiece < Piece << (Index >> 1)
Hash <« NextHashPiece * Hash
Index « Index + 1

ENDFOR

OUPUT Hash

29

Finley Cooper 7588 50639

Adding Positional Weaknesses

When we want to make the engine play worse, one of the techniques that I will use is adding Gaussian
noise to the piece square tables. These tables, which I found on the chessprogrammming wiki, show
the engine which squares are the best for each piece, encouraging the engine to make progress, castle,
defend the king and move towards the opponent. By adding noise to these boards, the engine will play
worse, which we want as part of the customisation.

To add Gaussian noise, we will sample from the normal distribution for each square, with a different
variance, depending on how badly we want the engine to play, represented by the positionPlay
customisation setting from 0 to 100. With 100 we want no variation, and with 0 we want maximum
noise. Any variation more than 50 points will cause the engine to start sacrificing pieces to get onto
certain squares, which we don’t want, so we will say that a noise of +50 points should only happen in
1% of cases with maximum noise.

X ~N(0,0%) with P(X > 50) = 0.01

X -
g

g z = 2.3263 (from an area right z score table at 0.01)

_ 50
"~ 2.3263

o ~ 21.49 = 20 (as the mean is zero and X is 50)

To map our customisation setting to the standard deviation, we can use an inverse linear relationship.
x
f(x) =20- 3

In the case where the positionPlay is 100, we will just return the piece square tables without noise.

To sample from X, we must use some transformation that takes a uniform random number in the
interval (0, 1), and outputs a normally distributed number, as in JavaScript we can only generate
uniform random numbers in the interval (0, 1). We can use the Box-Muller transform to create
standard normal random numbers and multiply by the standard deviation to get our noise for each cell.

Pseudocode —Adding Gaussian noise to the piece square tables, using the Box-Muller transformation.
Table cells are modified in place which I’ve shown.

SUBROUTINE AddNormalNoise(Tables)
IF positionalPlay = 100 THEN
RETURN Tables
ENDIF
StandardDeviation « 20 - (positionalPlay / 5)
FOR TableGroup IN Tables
FOR Table IN TableGroup
FOR Cell IN Table
Ul <« RANDOM() # Random number in the interval (0, 1)
U2 « RANDOM()
X « SQRT(-2 * NaturalLog(U1)) * COSINE(2m * U2)
Table[Cell] « Table[Cell] + (X * StandardDeviation)
ENDFOR
ENDFOR
ENDFOR
RETURN Tables
ENDSUBROUTINE

30

Finley Cooper 7588 50639

Move Generation Algorithm

This is the central algorithm for the engine, and it must be fast since it’s called thousands and
thousands of times. The algorithm looks for all ‘pseudolegal moves’ which are moves that could be
played if we didn’t care about the king being captured. This array is then filtered to remove any
moves which put the king under attack either directly from the king moving, or indirectly through
revealing an attack on the king. I calculate if a complicated move was legal or not by playing the
move on the board, and seeing if the king is attacked in this future board. This function is
computationally expensive, so the checks are done first to lower the number of calls to this function.

Start
Initialise an empty
array of psuedolegal
moves
Go to the next
Loop over square
the
squares
Y
Is current No m"e'm'd a"g‘ss“!'e
square the last - > S— e
square? on the current square
can do
Yes
Loop over the = =
squares to get the iberd S".:';g!
rrent p:silon ofthe plmee 0 Eksing (pinning)
ing
Calculate if the
King is currently
under attack (in
check) Gotothe
next move
Loop over
the
pseudolegal
moves b
Is the current No Is the current Yes Is the king under Yes
move the — 3 move a king —_— attack in its new it from the
last move? move? square? move list.
Yes l No No
Is the king in [
check, pinned, or No .| Keepitin the move
the move was g list
en passant?
l Yes
Does the move No
put the king
underattack?
Yes
A4
Finish (return the
move list)

31

Finley Cooper

Piece Counting Algorithm

7588

50639

One of the major benefits of storing the pieces’ locations in a bitboard is that we can easily calculate

the number of pieces on a board for a specific piece or for all pieces. The way we can do this is
calculate the Hamming weight of the bitboard, base 2. We can do this by creating a loop to

continuously remove the lowest significant bit and increase the hamming weight counter by 1 for each

loop.

Start

Input bitboard

Set hamming weight
to0

A

Does the
bitboard
equal 0 ?

Yes

Finish (return the
hamming weight)

No

Set the bitboard to
bitboard & (bitboard -1)

A

Increment hamming
weight by 1

32

Finley Cooper 7588 50639

Hardware and Security

As my project is built using Docker, it can run on any platform which supports Docker (Windows,
Linux, MacOS, ChromeOS). As my project is a full stack web application, some expertise would be
required to run the program from its source code, set up port forwarding, and domain setup. Using
Docker eliminates most of the complications, and the primary target hardware will be the Google
Cloud Platform which supports Docker. More specifically, the target product is the Compute Engine,
with an e2-micro instance (10GB disk, 1GB RAM, 1 CPU), which can run the project smoothly. A
main reason for choosing the e2-micro instance is that Google (as of October 2023) allows free access
to one month of hours of an e2-micro instance per month (with some restrictions), so the client
wouldn’t have to pay any running costs or run their own dedicated server.

I’ve tested the project on Windows 11, 10, Debian Buster, Bullseye, and Bookworm with no
problems. For the operating system within the Docker images, I chose Linux Alpine for the frontend
container, due to the lower RAM usage and security benefits of a lightweight Linux distribution like
Alpine, as I don’t want to use go over the 1GB RAM limit of the instance, otherwise the container
would use virtual memory, which would make it much slower. For the backend container, I chose
Python’s slim-bullseye Linux image, because I had some problems installing Gunicorn and Flask
within the container using Alpine Linux. I only chose Bullseye Debian because it was the latest stable
version when I started development (before June 2023).

My users will access the system using any up-to-date web browser. [won’t be supporting mobile and
touchscreen users, as a full responsive design is way too far outside of the scope for this project. The
project will be built to the standards of the current ECMAScript standard, as many of the features
such as JavaScript bigint and HTMLS5 canvas depend on the newest browser versions. I’ve tested the
project on Gecko browsers (Firefox) and Chromium browsers (Google Chrome, Microsoft Edge) and
I’ve only noticed slight disparities, most notability in the rendering of the SVGs on the Home route.

For security, as I'm dealing with user passwords, I need to protect the transmission and the storage of
the passwords. In transmission, I’'m using Cloudflare’s DNS system to provide HTTPS encryption on
the request body from the user to the Cloudflare server. For storage, I do not store the passwords in
plaintext, instead I store the password hashes using the secure SHA-256 hashing algorithm. I also add
a ‘salt’ to the passwords which prevents rainbow table attacks from precomputed hash tables, as each
password gets added some random bits to the start of the password, adding uniqueness between
precomputed hash values.

For authentication, I’m using a token-based system, where the server signs a proof of the client’s id
and authorisation level, which is then verified in each API request for user data. The tokens are signed
using the elliptic curve secp256r1 which has been generally agreed on to be secure. Authorisation is
managed by ‘scoping’ the tokens. The tokens are given an authorisation level, and possibly a user id
or a game id to have access to. A default authorisation level 1 only gives access in the user scope in
the API, and a level 0 only gives access to resources which match both the game id and user id scope.
The admin authorisation level is 5 and can access all resources. The scopes and authorisation level
cannot be changed by the client as this would change the hash of the message, invalidating the
signature, which would result in the request being denied. A different public-key private-key pair can
be created at any time, which invalidates all previous keys given out which could be done in the case
of a leak of the private key. The k-value calculated when creating signatures is a cryptographically
secure random number, preventing the extraction of the private key using mathematical analysis of the
signatures generated.

The database is normalised to keep data integrity between tables and cascade delete is enabled for the
relevant tables, so if a user is deleted, other records containing the user id are also deleted.

33

Finley Cooper 7588 50639

3 Testing

Test Plan

Before I start testing, I first want to break the testing up into different sections which reflect how the
different modules of the code is programmed. This should give me less errors at once and let me be
assured that important areas of the code are perfect.

Test 1 — Firstly, I must make a chessboard where the user can move pieces using the drag and drop
action, where the state of the chessboard is stored programmatically so the engine can play against the
user. In this test the board will be creates using a CSS grid, to place the squares, and the pieces will be
transformed to their position on the board as SVG elements. When dragging and dropping, the piece
should follow the mouse and snap to the closest square. Evidence of this test will be done through
screenshots and console outputs, and the dragging and drop behaviour can be later verified in other
videoed tests.

Test 2 — For each piece on the board, the piece attacks a certain pattern of squares. Here bitboards are
used to represent the set of squares which are attacked. This should provide foundation for the move
generation algorithm. For each piece, the attacks should be calculated and output in a bitboard. The
squares are stored in a 1D array, so different offsets are required to translate the piece depending on if
it’s close to the edge. For the knight and sliding pieces, these can be precomputed and hardcoded into
the program, and read from at runtime. This is tested using a function to output the binary
representation of the bitboard for each attack in each piece. A range of normal tests (centre of the
board) and boundary tests (near the edge of the board or near the corners) should be completed.

Test 3 — The final move generation functions are the most complicated, but the most important part of
this NEA. The tested functions are the piece’s move generation methods, along with the Board’s
playMove and unplayMove methods. To provide the highest level of rigours testing, I will have an
implementation of the PERFT test. Using test positions created and shared in chess programming
forums, I can compare the number of leaf nodes in my move generation tree against the community
agreed values. This should be done in the millions of nodes to prevent any edge cases from slipping
through, as only one error could lead to errors in the evaluation of moves. Video evidence of the
PERFT testing should be provided.

Test 4 — Using an implementation of the minimax algorithm with alpha-beta pruning, along with a
simple evaluation function for the leaf nodes of the search tree, the engine should be able to beat most
low-intermediate users. Creating an interface between engine Board class and the React app board
created in Test 1, should allow for the user to play against the engine. Video evidence of more than
one user playing against the engine should be provided.

Test 5 — As with any web application which contains a login system, it’s important that the
authentication is kept secure. For checking the passwords, the passwords should be stored using only
the password’s hash along with a salt to prevent rainbow table attacks. Also, I have chosen to use a
token-based system for authentication to speed up API requests and allow the sharing of signed
tokens. The tokens should be signed using the Elliptic Curve Digital Signature Algorithm on the curve
secp256r1 up to the standard created by the National Institute of Standard and Technology. This is
important as we are dealing with protected user data, so the signing algorithm should be tested using
agreed values using a digital elliptic curve calculator. Evidence of this should be given using console
outputs.

Test 6 — The Login and Signup form should be created to allow the user to be able to signup or login
to the web app without any misunderstandings and provide useful and clear errors to the user where
data inputted is wrong, missing or otherwise invalid. This can be verified using video evidence and
other users’ interactions with the system can be seen in later testing.

34

Finley Cooper 7588 50639

Test 7 — To allow the web app to continue, a strong API should be provided to allow the web app to
access resources pertaining to the user to correctly render information on the page. The API should
use correct HTTP response codes which should be tested, and data provided must be accurate
protected behind the token authorisation system. This should be tested using an API querying tool,
such as Postman which allows me to create requests to send to the server directly. The server console
should also be visible on screen to catch any errors and show each request being sent to the server.

Test 8 — The custom game and review functionality should provide the user with the customisation
settings programmed in engine. The user should also be able to share the game to users which aren’t
signed up to the web app. This can be verified using a mixture of screenshots and video tests.

Test 9 — The adventure mode should be tested in full to make sure the difficulties are appropriate, and
all text is displayed clearly and correctly. I also want to test the user’s ‘round up’ which they get once
they finish the game which should be downloadable from a HTML canvas element to a png file. This
should be verified using a mixture of screenshots and a video of the entire adventure mode
playthrough.

Test 10 — Final testing of the system should be conducted, testing all possible systems at once in one
continuous testing video. Testing of the name change, and account deletion systems should also be
tested for the first time. It would also be useful for a full end-to-end test by one other user to check the
system is easy to use. This should be recorded too.

Overall, the system should be tested by at least 3 people (including myself), with all players’ skill in
my target user range (low to intermediate).

35

Finley Cooper

Test 1 - User interface for the board

7588

50639

Tests for the correct setting up of a HTML chessboard with programmatically placeable pieces on
each square and drag-and-drop behaviour for each piece.

Test Description of | Expected Actual Result Fixes
Number | test Result Required
la(i) Create the chess | A grid of a Set a CSS
board that the chessboard grid for each
user can see and | with numbers square of the
display it on each chess board
correctly for the | square (for 8 by 8
user development) 00 BN E instead of
flexbox.
la(ii) Create the chess | A grid of a Black and
board that the chessboard white
user can see and | with numbers squares
display it on each should be
correctly for the | square (for switched,
user development) and the
colours
should be
adjusted for
viewing
ease.
la(iii) Create the chess | A grid of a 5| None
board that the chessboard 50
user can see and | with numbers
display it on each B B B B
correctly for the | square (for
user development) B B B B
W
I-l o H
1b(i) Display Test Test = Translated
Position 1 (see | Position 1 H.n' the pieces by
in next section) | with numbers 41] the negative
on the board on each 3 of its row
s gt
n-- .NH the' positive
Bl Ba of its row
A AA A

> EN
poy
= [t

squares (as
pieces start
in the top left
corner)

36

Finley Cooper 7588 50639
1b(ii) Display Test Test Iterated the
Position 1 (see | Position 1 wrong
in next section) | with numbers direction
on the board on each through the
square list of
squares
1b(iii) | Display Test Test None
Position 1 (see | Position 1
in next section) | with numbers
on the board on each
square
Lc(i) Piece dragging | Be able to Changed the
behaviour click and Piece was | dragging
hold a piece noton the | piece offset
to drag it cursor; it | to half a
was off by square
Zl;me a instead of a
whole square
square
Lc(ii) Piece dragging | Be able to None
behaviour click and Piece was
hold a piece correctly
to drag it under the
cursor.
1d(3) Piece dropping | Drag and None
behaviour drop the
standard input pawn on e2
to e4
1d(i1) Piece dropping | Drag and None
behaviour drop the Piece
erroneous input | piece to returned to
outside the its original
board should Square
return the :;hen J
. . roppe
piece to 1ts outside of
original the board
square

37

Finley Cooper

Test 2 - Attack Generation
Generate the attack patterns for each piece irrespective of the placement of pieces or state of the
current board. We store the attack patterns in the Bitboard data structure, so for each test the test
output should contain a binary representation of the bitboard which represents the board when
formatted 8x8.

7588

50639

board on
square 36
(rook offsets)

e file, with
zeros on all
other
squares

11110111
Bpgelonn
saealopd
BaaalaBn
Baaaloae

u

B
Boaaloae
Baaalons
Begeloce

i

Test Description Expected Actual Result Fixes
Number | of test Result Required
23(1) Get klllght A bitboard i Numerical value 2216263387392n Bitboard
attaCkS on an binary Binary representation: Should be
empty board | representat voaee0en mirrored
. . eaeRaaaa8
on square 39 | ion with 01000008 from the
(normal data) | ones onthe | % 2o°°% user
squares 54, I 89160000 displayed
aleaaaas
45,29,and || cocoseee board as the
22 only i » | function has
done the
moves from
square 24
not 39
23(11) Get knlght A bitboard i Numerical value 1B8849583422636032n None
. Binary representation:
attacks on an | binary
2aeea0008
empty board | representat 00806810
on square 39 | ion with st
(normal data | ones on the | soh
squares 54, | | e
45,29,and ||
22 only
2b(1) Get knlght A bitboard i Numerical value 132896n None
attacks on an binary Binary representation:
empty board representat 6E000000
on square 0 ion with e i
(boundary ones on the L)
data) squares 17 I s
elagaaaa
and 10 eeleaaaa
Only | eeaERaaa
| »
2c(i) Get knight A suitable] . None
attacks on an | error @) Uncaught Error using precomputed knight data
empty board | logged to »
on square 64 | the console
(erroneous
data)
. .« g0 F GET http://1Z7.¥. 8. 1:517/3/Tavicon.ic
2d(1) Get sliding 1s on the = None
. th Numerical value 1157443723186933776n
plece attaCks 5 rank Binary representation:
on an empty | and on the

38

Finley Cooper 7588 50639
2e(1) Get sliding Is on the i Numerical value 9241421688590383744n None
piece attacks | diagonal Binary representation:
on an empty | from the foamson
board on bottom left opao0100
aeaaleos
square 0 to top 26616660
(bishop right, with I i
alecpaos
offsets) zeros else || oeoccece
I_ >
21(1) Get white Is on i Numerical value 43988465111840n None
pawn attacks square 43 Binary representation:
on square 36 | and 4, with BBOGEEDE
(normal data) | zeros on all opan
eaaleles
other PeRERR00
eeapaaaa
squares Boaeaaae
eaaaeaae
‘ eaapaaae
! » |
2g(1) Get black lonl17 i : None
ttack 1 1l I Numerical value 131872n
awn attacks | only, a
gn edge OchI,'S Binary representation:
square 24 should be 0 oo
(bound 0eeRREED
oundary Be6aREBE
data) 2eeRRO0E
0e6aREBE
aleaaaae
20BRO00
| Be6RREBE
» |
2h(i) Get black A suitable | m : Added a
Numerical walue @n
pawn attacks | error I check for
. Bi tation:
on last file, thrown in sisdollod b e the pawn
square 0 the console GECEEEEE being on the
(erroneous S last file,
BRREBREEE)
data) B throwing an
BRRRREEE error if it is.
BEBRRBEE
BEBREEEE
d BEOBRREE
I » |

Zh(ll) Get blaCk A Sultable Visit https://reactjs.org/link/error-boundaries to learn mo None
O » Uncaught Board state is invalid, a pawn is on an end rank!
pawn attacks | error 5
on last file, thrown in :
square 0 the console
(erroneous
data)
2i(1) Get king Is on the i S WY None
attacks on Squares 1’ I Mumerical value 77@n
square 0 8and 9, H
. Binary representation:
with zeros | Lidi:
on all other KRpraon
geaaaRee
squares. PEOERBER
BEaaERE8
geaaazee
BEEEEEEE
11a6688
alaoaaea

39

Finley Cooper 7588 50639

Test 3 - Move Generation

PERFT tests are tests where the engine analyses the number of moves in a position and plays each
move on the board. For each move played, that board is then PERFT tested recursively until a
maximum depth is reached. The test then outputs the number of nodes reached (positions where the
final depth has been reached). All tests are done on the same board in memory, playing and unplaying
moves, so we also test the delicate play move and unplay move methods. Any major errors missed in
this test will cause the engine to be obviously misevaluating positions and playing very poorly.

PERFT test positions and community agreed results at https://www.chessprogramming.org/Perft Results

Test Position 1 Test Position 2 Test Position 3 Test Position 4

iR e
Al

Y

N

8

||
AFA
w7 o)

Test Position 1 was chosen as it’s the starting position for a chess game, and its simplicity made it a
good candidate for the first test position, as I ran into each bug one at a time, whereas [might have got
overloaded with bugs if I used a more complex position.

Test Position 2 was chosen as both sides can promote, promote with capture, black can castle both
sides, and en passant is possible. These moves are the hardest to code so I could uncover many bugs
which you wouldn’t see in most positions. I also mirrored the board for in Test m, to test white’s short
and long castling functionality.

Test Position 3 was chosen as the number of pieces is much smaller, so I could go more moves
deeper into the analysis which would test the unplay move function further.

Test Position 4 was chosen as it caused disagreements in early 2000s about the correct PERFT results
and tested castling further than Test Position 2.

Test Number | Test Description Expected | Actual Fixed Required
Result Result
3a(i) Calculate number of 20 Nodes | 20 None
moves from position Nodes
with depth 1 in Test
Position 1
3b(i) Calculate number of 400 Nodes | 400 None
moves from position Nodes
with depth 2 in Test
Position 1
3c(i) Calculate number of 8902 8902 None
moves from position Nodes Nodes
with depth 3 in Test
Position 1
3d() Calculate number of 1972781 1924305 | The value of captured pieces
moves from position Nodes Nodes was not being saved to the
with depth 4 in Test board's past game state stack,
Position 1 o captures were not being
unplayed correctly. The rank
that a pawn needed to be on to

40

Finley Cooper 7588 50639
be able to capture and
promote was set to 6. (It
should have been 6 when
white and 1 when black.)

3d(ii) Calculate number of 1972781 1972781 | None
moves from position Nodes Nodes
with depth 4 in Test
Position 1
3e(i) Calculate number of 4865609 4865609 | None
moves from position Nodes Nodes
with depth 5 in Test
Position 1
31(3) Calculate number of 119060324 | 1190603 | None
moves from position Nodes 24
with depth 6 in Test Nodes
Position 1
3g(i) Calculate number of 6 Nodes 6 Nodes | None
moves from position
with depth 1 in Test
Position 2
3h(i) Calculate number of 264 Nodes | 258 Accidental overwriting of
moves from position Nodes pieces between the king and
with depth 2 in Test the rook in castling
Position 2
3h(ii) Calculate number of 264 Nodes | 264 None
moves from position Nodes
with depth 2 in Test
Position 2
3i(i) Calculate number of 9467 9461 Unable to promote to a knight,
moves from position Nodes Nodes instead the option to promote
with depth 3 in Test to a rook was repeated
Position 2
3i(ii Calculate number of 9467 9467 None
moves from position Nodes Nodes
with depth 3 in Test
Position 2
3j(1) Calculate number of 422333 422333 None
moves from position Nodes Nodes
with depth 4 in Test
Position 2
3k(i) Calculate number of 15833292 | 1583415 | Queen-side castling could
moves from position Nodes 2 Nodes | occur even if there was a
with depth 5 in Test piece on b1/b8
Position 2
3k(ii) Calculate number of 15833292 | 1583329 | None
moves from position Nodes 2 Nodes
with depth 5 in Test
Position 2
31(1) Calculate number of 706045033 | 7060450 | None
moves from position Nodes 33
with depth 6 in Test Nodes
Position 2

41

Finley Cooper 7588 50639
3m(i) All tests from 1.gto 1.1 | 6 Nodes, 6 Nodes, | None
repeated, but with the 264 Nodes, | 264
board in Test Position 2 | 9467 Nodes,
but flipped with white | Nodes, 9467
as black and black as 422333 Nodes,
white (mirrored) Nodes 422333
Nodes
3n(i) Calculate number of 14 Nodes, | 14 None
moves from position 191 Nodes, | Nodes,
with depth 1-7 in Test 2812 191
Position 3 Nodes, Nodes,
43238 2812
Nodes, Nodes,
674624 43238
Nodes, Nodes,
11030083 | 674624
Nodes Nodes,
178633661 | 1103008
Nodes 3Nodes
1786336
61
Nodes
3o0(i) Calculate number of 44 Nodes, | 44 None
moves from position 1486 Nodes,
with depth 1-5 in Test Nodes, 1486
Position 4 62379 Nodes,
Nodes, 62379
2103487 Nodes,
Nodes, 2103487
89941194 | Nodes,
Nodes 8994119
4 Nodes

All tests from Test 3 (excluding 3G-3L) are setup to run automatically and I retested the

program whenever I made any changes to the engine.

Code for the automatic testing is in frontend/src/routes/Test.

Fully automatic testing (1 depth below max depth tested in Test 3)

Link to video: https://www.youtube.com/watch?v=08 PPSLyWkxk

42

Finley Cooper

Test 4 - Engine
Tests here are done on the Search function, the Evaluation function, and the Engine class which acts

as an interface between the board the user sees and the rest of the Engine.

Test User 1 — Me

Test User 2 — The user in Test 4

Test User 3 — The user in Test 10

7588

50639

Test Description of test | Expected Actual Result Fixes Required
Number Result
4a(i) Zero depth 0 0 centipawns None
evaluation of Test | centipawns
Position 1
4b(i) Zero depth A positive | 105 centipawns None
evaluation of Test | value
Position 2 (white is
(mirrored) winning)
4c(i) Depth 3 Engine The engine | Check video link. The alpha and beta
against Test User 1 | beats Test | The engine played evaluations should
User 1 very strangely, have been recursively
loosing pieces and given as the negative
lost the game, but not | of the current alpha or
playing randomly or | beta (as a position
purposely bad good for white is bad
for black).
4c(ii) Depth 3 Engine The engine | Check video link. A check for draws by
against Test User 1 | beats Test | The engine played repetition was added,
User 1 much better, by storing all past
eventually getting positions and
checkmate, but Test | checking if any had
User 1 drew the come up before when
game by repetition analysing a new
which the engine did | position.
not call.
4d(1) Depth 3 Engine The engine | Check video link Added a colour
against Test User 2 | beats Test | and Transcription 1 | indicator when to
User 2 as the room was where the engine just

quite loud and some
of the conversation
might be hard to
hear. The engine
beat Test User 2 as
expected. Test User
2 also made some
comments on the
design (see
Transcription 1)

moved as Test User 2
struggled to see the
engine checking him.
Also pushed the
computer’s
calculation function
below the render
function, so the board
wouldn’t freeze, as
Test User 2
described.

43

Finley Cooper

7588

Test 5 - Cryptographic functions
These tests are to make sure both the password hashing and salting is done correctly, and the token
signing is working and secure.

50639

Expected results for the elliptic curve calculations were calculated on the website
http://christelbach.com/ECCalculator.aspx with the curve parameters of secp256r1.

message with the
signature attached.

message ‘failure’ of
False

Test Test Description Expected Result Actual Fixes Required

Number Result

Sa(i) Generate a salted The program outputs a Screenshot 1 | None
password hash and | long hex string,
recheck the followed by an integer
password hash to and then ‘True’ when
verify the password | the hashes match

5b(i) Double the Logging of the point: Screenshot 2 | [was using normal
generator pointon | (5651521979069117141 division, not modular
the elliptic curve 31090...6242040, division, so my

3377031843712258259 calculations were

22371...7583569) being done with
floating-point
numbers.

Sb(ii) Double the Same as above Screenshot 3 | None
generator point on
the elliptic curve

Sc¢(i) Compute Logging of the point: Screenshot 4 | None
7592346587435283 | (4565756172492680224
943G on the elliptic | 40549...0027541,
curve (arbitrary 1071632667888171273
scalar) 08136...649759)

5d(1) Sign a random A very long integer Screenshot 5 | None
string of bytes being logged as the
using and private signature, and the
key and verify the | logging of ‘True’ when
signature using the | the signature is verified.
public key.

Se(i) Sign a Python A base64 encode string | Screenshot 6 | The differences
dictionary and starting with ‘ey’ (the between spaces
output a base64 base64 encoding of the between each attribute
encoded JSON Y symbol) and a logged when encoding the
message with the python dictionary with dictionary into JSON,
signature attached. | the message ‘failure’ of changed the message

False slightly.

Se(ii) Sign a Python A base64 encode string | Screenshot 7 | None
dictionary and starting with ‘ey’ and a
output a base64 logged python
encoded JSON dictionary with the

44

Finley Cooper

7588

Test 6 - Login and Signup form
These tests are to test that the login and signup form cannot send invalid information to the server.

Tests 6a-6m are on the signup form, and tests 6n-6q are on the login form. A video of all tests passing
is in Testing video links.

50639

For the purposes of the tests, the password input type was removed, so the value of the password input
box can be viewed by the examiner.

Test Test Expected Result Actual Result Fixes Required
Number | Description
6a(i) Entering an The email box goes red and | signUp The email regex
invalid email | displays the error “Please did not work on
“test@” enter a valid email” Firefox, so I
found a new
Regex to use.
6a(ii) Entering an The email box goes red and | Check video link. None.
invalid email | display the error “Please The correct error was
“test@” enter a valid email” shown.
6b(i) Entering a The email box goes green. | Check video link. None.
valid email The box accepted the
“test@site.co email.
_—
6¢(1) Entering the The display name box goes | Check video link. None.
too short red and display the error The box correctly
display name | “Names must be between 2 | rejected the name.
“a” and 32 characters and not
end or start with a space”
6d(i) Entering a The display name box goes Changed the
name that red and displays the error regex to
starts with a “Names must be between 2 disallow spaces
space “ name” | and 32 characters and not at the start of
end or start with a space” the names.
6d(ii) Entering a The display name box goes | Check video link. None.
name that red and displays the error The box correctly
starts with a “Names must be between 2 | rejected the name.
space “name” | and 32 characters and not
end or start with a space”
6¢e(i) Entering a The display name box goes | Check video link. None.
valid name green and accepts the name. | The box correctly
“Finley” accepted the name.
61(1) Entering the The password box goes Check video link. None.
valid password | green and accepts the The box correctly
“Passwordl” | password accepted the
password.
6g(1) Entering the The password box goes red | Check video link. None.
invalid and displays the error The box correctly
password “Passwords must contain rejected the
“Password” between 8 and 32 password.
(no number) characters, at least 1
uppercase, 1 lowercase, and
1 number”
6h(i) Entering the The confirm password box | Check video link. None.
valid password | goes red and displays the The box correctly
“Password1”

45

Finley Cooper 7588 50639
and the invalid | error “Passwords do not rejected the
confirm match” password.
password of
“Passwordla”
6i(1) Entering the Both boxes go green and I was
valid password | accept the password essocessee comparing the
“Password1” wrong
in both the variables. Also,
password and the green was
confirm =L shown under
password the confirm
boxes password input,
so I fixed that.
6j(1) Entering the Both boxes go green and Check video link. None.
valid password | accept the password The box accepted the
“Password1” password.
in both the
password and
confirm
password
boxes
6k(i) Submit with The display name box goes | Check video link. None.
empty display | red and displayed the error | The form is not
name input “This field must not be left | submitted.
blank”. The form is not
submitted
61(i) Submit with No change (the error should | Check video link. None.
an invalid already be showing). The The form is correctly
email form is not submitted. not submitted.
6m(i) Submit with The form is not submitted, | Check video link. None.
an email with | and the user is given an The form is correctly
an account error message showing not submitted, and an
which already | them an account already error is shown.
exists exists with that email.
6n(i) Submit with The form is submitted, and | Check video link. None.
all details the user is redirected to the | The form is
valid. login form submitted, and the
user is redirected
correctly.
60(i) Login with the | The boxes go red and the Check video link. None.
incorrect error “The credentials The correct error is
details from provided were invalid” is returned
the previous displayed
tests
6p(i) Login with the | The boxes go red and the Check video link. None.
correct email error “The credentials The correct error is
but incorrect provided were invalid” is returned
password. displayed
6q(1) Login with all | The user is redirected with | Check video link. None.
correct details | a cookie for authentication | The user gets the
and redirected to the root cookie and is
page. The cookie is correctly redirected.
correctly signed and
contains the user’s id.

46

Finley Cooper 7588 50639

Test 7 - API and Authorisation

These tests are on the REST API which acts as an interface between the web app and the database. It
also handles logic for determining which users can access what data. Testing here is done using
Postman to construct the web requests and analyse the responses. This will also test the SQL database
queries. I had to manually remove the ‘Secure’ labels on the token cookies, as with this label on the
cookie wouldn’t be sent over HTTP, which is what I was using for testing locally.

All the tests ran correctly which I was expecting, since almost all these functionalities had been tested
before in Test 6, however while making the tests, I did find one error, where providing a single
missing attribute with a non-empty request body would cause an error, which I fixed before recording
the tests. The tests were recorded (go to Testing Video Links). At the start of the video, I delete the
SQLite database file, so we’re testing from a fresh database, and I also have a terminal on screen
which logs all the requests and responses from the server.

Test Test Description JSON Response
Number
7a Signup with invalid email Valid email not provided in the request
7b Signup with invalid name (trailing space) | Valid display name not provided in the request
7c Signup with invalid password (too long) Valid password not provided in the request
7d Signup with empty request body No data was provided in the request
Te Signup normally Account created - Please Login
7t Login with incorrect password The credentials provided were invalid
7g Login normally Successfully logged in (foken and isLoggedIn
cookie should also be sent in the response Set-
Cookie header).
7h Get user (self with @me) User data
7i Get user with user id Same as above
7 Get a different user Forbidden (even if the user doesn’t exist)
7k Store a chess game under our user id Game successfully archived
71 Same as above but without a ‘winner’ All game data not provided in the request
attribute set in the request body
7m Store a chess game under a different user | Forbidden
id
n Get all games from self Data sent from test 7k
70 Get game from 7k by its id Same as above
7p Get game with invalid id Game does not exist
7q Get text from adventure level (no cookie) | Adventure level data
7s Change user adventure level to 2. User level id updated (check by conducting test
7i again)
7t Change user display name User display name updated (check by conducting
test 7i again)
7u Create sharable link from game in test 7k | A link path starting /s/ is given.
A% Delete account Cookies are revoked and new account can be
made by conducting test 7e again
Tw Follow shareable link (while not logged HTML response and tempToken is sent. The
in) to get a game scoped token. Conduct game is sent in response to test 70
test 70 again to verify the token works
7x Follow invalid shareable link Link does not exist (Plain text not JSON)
Ty Sign in with admin account Successfully logged in.
7z Get all users (only works with admin) Array of all users on the database.

47

Finley Cooper

7588

Test 8 - Custom Game and Review
This is testing for the custom game feature and the review functionality. This is at the core of the
project: the vast customisation settings for the engine are what differentiates my system from the
existing systems. It is also important that the difficulty setting is wide enough to allow a range of
users to be able to use the system, otherwise users could find themselves locked out of the adventure

mode, not being able to pass the level.

50639

Test Test Description Expected Result Actual Result Fixes
Number Required
8a(i) Make sure the values of | Engine depth =4 Screenshot 8 Changed
the sliders are recorded | Position Strength = 100 (all correct limit on
in the engine. (Max on | Aggressiveness = 100 apart from blind | blind
all sliders) Blind Spots = 50 spots which is spot
Piece Exchanging Tendency | incorrectly 100) | slider to
=100 100.
8a(ii) Same as above Same as above Screenshot 9 None.
(all correct)
8b(i) Test the difference Depth at 1 should make Check video None.
between depth at 1 and | moves almost instantly and link (0:00-1:25)
depth at 4. depth at 4 should take up to | As expected
30 seconds per move.
8c(i) Test the difference With the positional strength | Check video None.
between positional 0, the pieces will be spread link (1:25-3:00)
strength 0 and 100. out randomly, with positional | As expected
strength 100, pieces will tend
towards the opponent’s side
in the middle of the board.
8d(1) Test the difference The engine should keep its Check video None.
between aggressiveness | pieces on its own side at low | link (3:00-5:05)
0 and 100. aggressiveness and throw its | As expected
pieces at the opponent at
high aggressiveness.
8e(i) Test the difference The engine should play Check video None.
between blind spots normally at 0, and extremely | link (5:05-7:30)
from 0 to 50. poor at 50 As expected
81f(i) Test the saving and While testing, a game should | Check video None.
archiving of a game, and | be finished, saved, and then | link (7:30-8:34)
the review of the game rewatched, with the save As expected
by stepping through moves shown. (ignore the
move-by-move. other games on
the history from
past tests)
8g(1) Share the link from the | To be able to view the game | Check video None.
game in 8f and view the | the same as in 8f after being | link (8:34-9:13)
game while not logged | redirected from the /s/ link. As expected
in.
8h(i) Same as 8g but logged Same as above, and not be Check video None.
into a different account | able to view the game when | link (9:13-
not normally available the ‘tempToken’ cookie is 10:14) As
to access the game. removed, getting the expected
(Check the temp token Forbidden 403 HTTP status
overrides the normal code.
token.)

48

Finley Cooper

7588

Test 9 - Adventure Mode
This is testing for the main feature of the project, the adventure mode. It’s important that the
adventure mode can be beaten by most chess players, and that there are no bugs that prevent the user
from advancing, locking them out of the main functionality of the project. We will also test the round
up analysis when the user finishes the adventure mode, and test the updating and exporting of the
feature, as this is also one of the main differences that this project has over existing online chess sites.

50639

Test Test Expected Result Actual Result Fixes Required
Number | Description
9a(i) Test the Text centred in the middle- Screenshot 10 I moved the text up
positioning | top of the page, large enough | (Text is too low and increased the
and size of | to easily read. Button should | and small) font size.
the story be lower than the middle
text and vertically.
continue
button
9a(ii) Same as Same as above Check video link | None.
above (all correct)
9b(1) Test the When the user finishes the Check video link | None.
transition chapter, they should press (all correct)
from the continue which should put
story to the | them in a chess game.
chess game
9¢(i) Test the The first battle should be Check video Increased depth
actual game | very easy to beat, which the | link. (The engine | from 1 to 2. This
(for the engine throwing its pieces played too well, meant that the
first towards the player aimlessly. | so I had to stop simplify position
chapter) the test here to evaluation is done
see what went with a depth of 3, so
wrong) more moves are
missed out.
9c(ii) Same as Same as above Check video link | None.
above (all worked fine)
9d(i) Test speech | Speech should be prefixed Check video link | None.
text. with the coloured speaker (all worked fine)
name
9e(i) Full test of | All speech should be Check video link | I wasn’t happy with
the displayed, and all games (all worked fine, how some opponents
adventure. | played suitably easy for a more difficulty played, but I’ll wait
low skilled player. testing will be in | for my testers in
Test 10) Test 10 before 1
change anything.
91(1) Test the Get the win-ratio of 100% Check video link | None.
game round | for all sections. Then lose the | (all worked fine)
up feature. | game, the number of games
Lose a played, and games lost
game and increases by one, the
recheck. aggressive win rate changes
to 75%, and the tactically
strong win rate to 75%.
9g(i) Test the The same round up is saved | Check video link | None.
download as a .png file to the user’s (all worked fine)
for the device.
round up.

49

Finley Cooper

Test 10 - End-to-End testing

7588

50639

Tests of the entire system from signup to finishing the account. All the tests here are tests repeated
from earlier tests, I’'m only testing how the components of the system fit together and some of the
miscellaneous components which haven’t been tested so far. I also am conduction end-to-end testing
by other people who haven’t used the system before. This will be helpful to judge how easy and
intuitive the app is to use, which is important, as my expected users are on the younger side, so might
need more assistance navigating the platform that I thought. If user requests or requires a major
change to fix a problem, I will include this in my evaluation instead, as I am nearing the end of my

project.

Test 10.1 - My End-to-End Test Action Log

Full video link in Testing Video Links

change display name to ‘James’.

Action Timestamp | Errors, unexpected | Fixes Required
behaviour, or user
confusion

Redirected from root path to the 0:00 None. None.

logged in path.

Clicked link to signup 0:03 None. None.

Entered valid email address 0:09 None. None.

Entered invalid name 0:14 None. None.

Entered valid name 0:16 None. None.

Entered invalid email 0:20 None. None.

Entered valid password 0:28 None. None.

Entered invalid confirm password | 0:32 None. None.

Entered valid confirm password 0:33 None. None.

Completed sign up 0:35 None. None.

Logged in with valid credentials 0:45 None. None.

Started custom game as white 1:10 None. None.

Played custom game to a 3:25 None. None.

stalemate.

Viewed game history 3:37 Page incorrected Replaced ‘Loss’ with
showed ‘Loss by ‘Draw’ in the table when
Stalemate’. winner is 0 (no winner).

Reviewed while logged in. 3:46 None. None.

Created shareable link 4:27 None. None.

Reviewed from shareable link in 4:30 None. None.

private window (not logged in)

Reviewed from non-shareable 5:02 The API rejected Redirected users to the

link in private window (not the request as login page if the server

logged in) designed, but the sent 404 (game not
user wasn’t notified | found), 401
that they can’t (unauthorised), or 403
access the game. (forbidden).

Started the adventure mode 5:20 None. None.

Display name ‘Finley’ formatted | 6:35 None. None.

in dialogue.

Left adventure mode mid-story to | 6:40 None. None.

50

Finley Cooper 7588 50639

Adventure mode continues from 6:55 None. None.

last saved chapter, with the new

display name ‘James’

Finish adventure mode and 15:08 None. None.

viewed statistics sheet.

Download and view locally 15:15 None. None.

statistics sheet.

Viewed game history 15:31 Game result Changed to ‘Win by
showed as ‘Win Checkmate’

Checkmate’

Reviewed most recent game 15:34 The next move Changed conflicting CSS
button was class names of the board
positioned container with the
incorrectly and way | Adventure board
too big. container.

Reviewed next most recent game | 15:50 Same as above Same as above.

Deleted account 16:00 None. None.

Logged in with server-generated 16:07 None. None.

admin credentials.

Reviewed empty game history 16:12 None. None.

Navigated to /api/users/all/ 16:22 I mistyped the route | None.
while testing.

Ignore the NGINX
eITor.
Navigated to /api/users/all to 16:53 None. None.

check the user was deleted.

Test 10.2 — Test User 3 End-to-End Test Action Log

Full video link in Testing Video Links

This is also a test of the project being hosted on Google Cloud, as before tests were conducted either
locally or through static file hosting (where the API was not included).

Action Timesta | Errors, unexpected behaviour, or user Fixes Required
mp confusion
User navigates to the 0:01 None. None.
URL given and is
redirected
Submits an email and 0:19 The system acted as expected, but the None.
password in the login test user thought the login form was the
form signup form. There’s no easy fix for this,
which I talk about more in the
evaluation section.
User navigates to the 0:25 None. None.
sign-up page
User enters an email 0:32 Microsoft Edge auto-filled an email Added an
address using Edge which the user inputted as the login ‘autocomplete="
autofill credentials; however, Edge also filled off” HTML
the email address for the display name attribute to the
box. name input.
User enters the unsecure 0:37 None. None.
password “password”

51

Finley Cooper 7588 50639
User enters the confirm 0:55 None. None.
password input
incorrectly
User changes display 1:09 None. None.
name
User enters matching 1:16 None. None.
password
User signs up 1:18 None. None.
User logs in 1:28 None. None.
User clicks on ‘Settings’ 1:41 None. None.
User clicks on custom 1:51 None. None.
game
User creates an aggressive | 2:10 None. None.
engine, with high blind
spots
User starts the game 2:11 The board was too zoomed in, which None.

resulted in the board being only partially

visible. On my objectives, I put aside

making the website responsive, so this is

outside of the scope of the project.
User plays the game 2:12- The engine plays about expected, with a | None.

5:26 good amount of aggressiveness, and

played down to the lower skill level

tester well.
The user wins the game 5:26 None. None.
by checkmate
The user plays the first 5:38 The test user played much worse than I | None.
level of the ‘adventure’ anticipated here, so it’s very reassuring
mode. that they were still able to beat the

engine on the engine’s lowest settings.
The user clicks on game 9:15 None. None.
history page.
The user reviews the 9:22 Same error with the incorrectly None (apart

game in the adventure
mode.

positioned button, as I was accidently
running an older version of the code.
The user also wished for a ‘back’ button
for being back a move.

from updating
the project
version in the
cloud).

Post-test Interview:

Me: “Do you have any immediate problems with the system which make it hard to use or navigate”

Test User 3: “There was nothing that made it hard to navigate, but there wasn’t exactly links between
each section so you [don’t] have to step back to get to the main page.”

Me: “Did the engine play human-like and play to a suitable level which you set”

Test User 3: “Well, I believe that with sliders and settings it has the potential to act human like, but
with blind spots set to 50% it doesn’t play human like 50% of the time. Is your intention to make it

play human-like?”

Me: “Yes, but [want to make sure that everyone can still beat the engine by changing the settings.”

Test User 3: “Hmm. It just doesn’t play human like as much in the extremes.”

52

Finley Cooper 7588 50639

Screenshots

Screenshot 1:

84i combined_numeric = salt & (password_numeric << (constants.salt_bytelength * 8))

85

86 combined bytes_length = math.ceil(((math.floor(math.log2(password numeric))) + 1) / 8) + constants.salt bytelength

87 combined bytes = int.to_bytes(combined numeric, comb

88 % it Bash X % gitBash x. [e o
89 return sha256(combined_bytes, usedforsecurity=True).

zi finle@FinleysComputer ~/Coding/newest-nea/nea/backend/crypto_auth (main)
92 - def check password hash(password: str, password_hash: st $ python _ init .py

93 | digest_hex, salt_string — password_hash.split(" ") | 15ec7bf@b508732b49f8228e87d24365338F9e3ab994bB0afa8e5a3bffes5fd8b 435417899
94 True

a5 check_digest_hash, _ = create_password_hash(password

i finle@FinleysComputer ~/Coding/newest-nea/nea/backend/crypto_auth (main)
97 return check digest hash == digest hex ¢ ‘

98

99

10| if _name_ - *_main_":

101 | a = create_password_hash("password™) |

102 print(a)

1e3

104| | print(check password hash("password”, a))

Screenshot 2:

104 G=(
195 | 43439561293906451759852585252797914282762949526841747995844880717082484635:
196 | 3613425895674979579858512791958788195661110866729858156871877198253568414405]
197 ¥,
198 | n=1157928892103562487626974469494087573529996955224135768342422259061686851 2644 3¢
199)
280
281 if _name_ == "_ main_ ":
2028 | new_point = curve.point_addition(curve.G, curve.G)
283 | print{new_point)
284
-
<% Git Bash X 4% GitBash X L h

finle@FinleysComputer ~/Coding/newest-nea/nea/backend/crypto _auth (main)
$ python elliptic_curve.py
(3.2952382864281573e+76, 4.997046695979657e+76)

finle@FinleysComputer ~/Coding/newest-nea/nea/backend/crypto _auth (main)

Screenshot 3:

281 if name == "_main_
282 new_point = curve.point_addition{curve.G, curve.G)
283 | print(new_point)

?64

% Git Bash ® 4% GitBash X 4w = O >4

finle@FinleysComputer ~/Coding/newest-nea/nea/backend/crypto_auth (main)
$ python elliptic curve.py
(56515219790691171413189057904011688695424810155802929973526481321309856242048, 3

3770831843712258259223711451491452598088675519751548567112458094635497583569)

finle@FinleysComputer ~/Coding/newest-nea/nea/backend/crypto _auth (main)
$ |

Screenshot 4:

53

Finley Cooper 7588

135 J
200

281 if _ name ==
2682 g

main_ ":
new_point = curve.scalar multiplication(7592346587435283943, curve.G)
283 print(new_point)

284

50639

ftinle@FinleysComputer ~/Coding/newest-nea/nea/backend/crypto auth (main)

$ python elliptic_curve.py
(45657561724926802244054908658540479513960907182086622596357808504780027541447, 1
87163266788817127308136553397263134791629950148989282633809352972864975974054)

Screenshot 5:

195 4843U56129398b451 /509852585252 /Y /014282 /62Y4U520041 /4 /995844880 /1 /U8 24840 35280,

196 ‘ 36134256956749795798585127919587881956611106672985015871877198253568414405189,

197 Y

198 n=1157926292183562487626974469494075735299969552241357603424222598616868512044369,

100)

200

281 pub_key = 991771802931504373747901948730588088457592066655216881038040939932846658479300522759468697C
282 priv_key = 58011543548814654331552347745764341220085386584648787047068252827433568990510
283 if __name_ == "_ main_ ":

204 random_bytes = b"\xa5\xfae'\x43"

285

206 signature = curve.createSignature(random bytes, private key=priv_key)

287 print(signature)

208 print{curve. verifySignature(random_bytes, signature=signature, public_key_ int=pub_key))
289

% GitBash X 4% gGitBash X 4% GitBash Sl e . O X

finle@FinleysComputer ~/Coding/newest-nea/nea/backend/crypto_auth (main)

$ python elliptic curve.py
83345174393142714413358649435600411932128787996033218132349998a877859189277928629336629
352502938105868860106648149701336214349450183865710930241257292099979

True

Screenshot 6:

98
99 priv_key = 158785373791364482835651293196525783889891173161915686394823784795659490118767
168 public_key = 487443504862200762171313482638333689779967421270293668704566521063631521960489540178
181 if _name_ == "_main_ ":
182 token = create_token({"test_key”: “test_value"}, private_key=priv_key)
183 print(token)
184
185 decoded_token = verify(token, public_key=public_key)
1686 print(decoded_token)
187
% GitBash x 4% GitBash X &% GitBash el | o N

finle@FinleysComputer ~/Coding/newest-nea/nea/backend/crypto_auth (main)

$ python _ init_ .py

eyJpbnZhbG1k(QXQi0jE20TUBOTY1MIQuUOT c10Tc5LCI zaliduYXR1cmli0i105GIVendbalid3cFNRe hNdkEwll
TexUVFCbWErNXZQalc3dGIRNXdwcXIzUWRBcWA2R215bkc1S3AvbzN2d2t5aFBGdkdYQ1B6TDIBT INsbHEVD®
htUTB9Tiwic21nbmVkQXQi0jE20TUBMTAxXMIQuOTc10Tc5LCIOZXNBX2t1eSI6INR1c3RFdmFsdwWUifQ==
{'failure': 'Token signature invalid'}

finle@FinlevsComputer ~/Coding/newest-nea/nea/backend/crvoto auth (main}

4% Git Bash X % GitBash ® B - 0 ®

54

Finley Cooper

Screenshot 7:

7588

a7
98
99 priv_key = 15878537379136448288585129319652576388089117316191506394823784795659490118767
1ee public_key = 487443594962290702171313482638333689779967421270293607045665218638315219604895481.
1e1 if _ name__ ¥ Cmainm ot
182 token = create token({"test_key": “"test value"}, private_key-priv_key)
103 print(token)
184
1@5 decoded_token = ify(token, public_key=public_key)
186 print{decoded token
187
<% Git Bash X 4% GitBash X 4% GitBash x % O x

finle@FinleysComputer ~/Coding/newest-nea/nea/backend/crypto_auth

$ python _ init_ .py

eyJIpbnZhbG1kQXQi0jE20TUROTY2MTkuMDcyNDASNCWic21nbmF@dXI1150iQlpYUWhBa@1XNVZuRTdSTUpWU
3EzYWRVR jdGN1h6NDhAMXptWERAd25YbmZRVHRVYKFmZ3BFTJZZVkVBRVIITDexY3ZOWj1Uc2@yekFCSFgASY
FEV2cOPSIsInNpZ251ZEFRIjoxNjkINDEWMFESLIA3MIQWOTQsInR1c3Rfa2V51joidGVzdF92YUix1Z519

{"test _key":

finle@FinleysComputer ~/Coding/newest-nea/nea/backend/crypto_auth
T

"test_value', "failure': False}

Screenshot 8:

Play as White

o7
Play as Black

Engine Depth

Positional Strength

Aggressiveness

Blind Spots

Piece Exchanging Tendency

p
| Play J
|\

Screenshot 9:

P

| Play as White

S N

Engine Depth

Positianal Strength

Aggressiveness

Blind Spots

Piece Exchanging Tendency.

[Play |

=y N

(Play as Black

& o

® 1 inspector () Consale D 0: [« >
W ¥ Filter Output Ed

Errors Warnings Logs Info Debug €SS XHR Reguests
[vite] connecting...
client.ts:19:¢
[vite] connected.
client.ts:134:1¢
P GET http://127.0.€.1:5173/f.. [HTTP/1.1 Not Found ims’

@ Uncaught (in promise) SyntaxError: JSON.parse: unexpected
character at line 1 column 1 of the JSOM data [Learn
More]

= Object { depth: 4, positionalPlay: 100, aggressiveness:
10, tradeHappy: 100, blindSpots: 1@ }

aggressiveness: 10@

blindSpots: 180

depth: 4

positionalPlay: 188

tradeHappy: 108

» <prototype>: Object { .. }

index.tsx:80:1¢

» a
R {3 inspector Console D) @1 @ - X
WV Fitter output fed

Erors Wamings Logs Info Debug CSS XHR Requests
[vite] connecting...
client.ts:19:8

[vite] connected.
client.ts:134:14

@ Uncaught (in promise) SyntaxError: JSON.parse: unexpected
character at line 1 column 1 of the JSON data [Learn
More]

w Object { depth: 4, positionalPlay: 10, aggressiveness:
180, tradeHappy: 188, blindSpots: 58 }

aggressiveness: 180

blindSpats: 58

depth: 4

positionalPlay: 108

tradeHappy: 108

b <prototype>: Object { .. }

index.tsx:88:16

» [in}

50639

55

Finley Cooper 7588 50639

Screenshot 10:

B Cc O D 1270 ; o 0 8 =

It had been three nights since | left from Phoenixpeak village to search for Valnera Castle and take the Elixir.

Continue...

S S s e AE A . 183

56

Finley Cooper 7588 50639

Testing video links
Manually Change the quality of the YouTube video player if the text is not visible.

Link to playlist containing all videos.
Shortened URL: https://tinyurl.com/finleynea

Direct URL to playlist (if shortened URL does not work)
https://www.youtube.com/playlist?list=PLIbnTcOPbWiZJrxLaCyaOol HuE9aEGd_

URLSs to individual video links

Test Number Link
Test 4¢(i) https://youtu.be/GoRMgk2nbGQ
Test 4c(ii) https://youtu.be/ vnRzjOp8XM
Test 4d(i) https://youtu.be/fDdmIVYvz 4 Also see Transcription 1
Test 6 https://youtu.be/40Y XiSrRNRI
Test 7 https://youtu.be/NFeEIG-127TM
Test 8b to 8h https://youtu.be/vzhvRInU7AE
Test 9a(i) to 9¢(i) | https://youtu.be/wj GGvibb50
Test 9¢(ii) to 9g(i) | https://youtu.be/Sn6G 7zFo74
Test 10.1 https://youtu.be/xXpvwnKMawg
Test 10.2 https://youtu.be/zmDblbeJUz0
Transcriptions

Important comments are bolded.

Transcription 1

[Me]: Right, go on.

[Me]: You can talk about it, talk about the whole system as a whole.

[Test User 2]: Ok, alright, alright, alright.

[Me]: Tell me what’s bad and tell me what’s good.

[Test User 2]: I'm gonna win. The bad thing is that I’m losing.

[Me]: It might not be bad thing; this is it on the high settings, so.

[Test User 2]: Oh, this is the high settings?

[Me]: Yeah, you should be expecting a hard game.

[Test User 2]: See that was intentional. (sarcasm)

[Test User 2]. I’'m gonna bring the bishop up to defend. Then get, then that’s gonna happen. But that was
intentional.

[Me]: Ok

[Test User 2]: But not ready for this — ah see defence. It knows. The engine knows.

[Test User 2]: Just do some pushing. I’m in check, so I’'m just gonna-. Ok I’ll trade that.

[Test User 2]: Little bit slow but that’s ok.

[Me]: Ok, ok.

[Test User 2]: That was a terrible move (talking about his own move)

[Test User 2]: No that was intentional (sarcasm). Right here me out, bring- ah bring it up. But then what I do
then, hmph.

[Test User 2]: Strategies, strategies, I’m in check, whoops.

[Test User 2]: See I’ve traded with the queen now, so it’s an easy win for me.

[Me]: [The game] doesn’t look too mismatched.

[Test User 2]: See it works out, in the end it will work out in my favour. Let’s try-, we’re not having any of that.
[Both]: Oooh (The engine played a good move that neither of us saw)

[Me]: It got you there.

[Test User 2]: That’s fine, I’ll take that and check you. Then I’ll try and push

57

Finley Cooper 7588 50639

[Me]: Let’s see if finishes the job.

[Test User 2]: I’'m gonna quickly bait this, there we go. Bang.

[Me]: I think it got you.

[Test User 2]: No, no, no, it’s definitely not got me. See?

[Me]: I wanna see if it actually checkmates you and doesn’t just check you over and over again. Because that’s
the problem I had on the test before.

[Me]: It’s making progress.

[Test User 2]: What we are gonna do, however, is move this guy up. Then, alright, move this guy up, then keep
pushing.

[Me]: Uh-oh

[Test User 2]: Ok? That’s quite interesting.

[Crosstalk about the engine’s impressive move]

[Me]: [It’s] checkmate.

[Test User 2 tries unsuccessfully to break the board by moving the king outside of the container]

[Me]: So what you do say about it, what do you say about the system? Would you say it’s easy to use?

[Test User 2]: It’s easy to use. It’s a tiny bit slow, but that’s ok.

[Me]: Tiny bit slow, ok. Is it slow because it freezes when you [make a move]?

[Test User 2]: Yeah. And it’s also too good.

[Me]: Well, it’s on the harder settings, so it’s what I’m expecting.

58

Finley Cooper 7588 50639

4 Evaluation

Changes Due to Feedback

Throughout the project I have had other people test my project and give me feedback to improve the
project. For my first test of just the engine with Test User 2, I added an indicator of where the user
and engine had just moved, so the positions were more easily understood. Test User 2 also
complained that the engine would freeze the board while it was thinking, causing the piece to ‘hover’
over the board until the engine had finished calculating. To fix this, I added a delay on the computer
calculation function, so the rendering method on the board React component had processor time to be
computed first.

From Test User 3, I only made some minor changes to the actual code, such as preventing the name
input from being autocompleted into, and I added some navigational features, such configuring the
app to push the routes to the browser history so they can be easily traversed by the user.

My interviewee also had some comments and first introduced me to the repetition problem while he
was testing the project outside of our interview, which lead me to introduce the past board stack and
the hashing function to encourage the engine to stop repeating positions, which worked as I no longer
had any more problems in the subsequent tests.

Project Objective Evaluation

These are the evaluation of the objectives discussed in the analysis section, how I think I achieved
them, and how my testers observed the project. (Look back at the Analysis section for specificity for
each objective)

Create a signup and login system.

Create a customisable chess engine.

Create an adventure mode using the engine customisations.
Create a REST API between the database and the website.

W=

Objective 1 — The signup and login system

The signup and login system’s functionality were complete, and all requirements for the first objective
were met fully. The assurance of the complexity of the password was assured in Test 6, and the
server-side protections were confirmed in Test 5 and 7.

Beyond the objectives, in the end-to-end test with Test User 3 the user thought that the first form they
were redirected to be the sign-up form, where in fact it was the login form. If [was going to redo the
project, I could add some browser side cookie, which is stored when the user first navigates to the
website. The absence of this cookie would cause the user to be redirected to the sign-up page instead
of the login page.

Objective 2 — The engine

The resources used by the engine on the browser have not caused any problems since I introduced the
bitboards for storing the pieces. Before that, I would have the browser crashing due to high memory
usage, and long CPU time would cause the engine to freeze when a move was played. Now, through
my testing I’ve confirmed that the performance of the engine is sufficient (with a default depth of 2),
and no issues from my testers since the Test 4 with Test User 3.

59

Finley Cooper 7588 50639

I was very pleased with the ability of the engine to play down to its opponents, being able to lose to
beginner chess players, and being able to beat more experienced chess players like me. The
customisation settings were mostly a success, with the blind spots, aggressiveness, and positional play
settings were well noticeable and changed how the games were played, however the piece exchanging
tendency was less noticeable, but this wasn’t in my main objectives. The GUI was also clear and none
of my testers had any problems with it while adjusting the engine.

The introduction of the blind spots made the engine play down to opponents very well, however this
did lead to a loss of the human-like playstyle of the engine which was picked up by Test User 3.

Objective 3 — The adventure mode

Testing the adventure mode was hard, as it would take near an hour for a beginner chess player to
fully complete the adventure mode, however I had no problems with my own end-to-end test and my
one game with Test User 2 worked fully at an expected skill level. The display of the opponent and
user’s name worked great, and the user could change their name with no issues. The level saving also
worked correctly, and the finalised round-up of the user’s chess adventure shows relevant and
interesting information. The file can also be downloaded fully. This was all shown in Test 9. For the
review functionality, I had no problems, but Test User 2 gave some comments about more settings for
reviewing, including being able to move forward and backwards in the game and possibly play new
moves on the board to improve on how they played, however this was out of the scope of the
objectives. The shareable functionality also worked well, which was shown in my end-to-end test and
Test 8.

Objective 4 — Server API

The relevant API resources are accessible, however there are still some minor problems for showing
the user the errors made by the request. Most times when an error is occurred, the user is just
redirected to the login page (as most errors are due to authentication errors), however this wouldn’t
work for a server-side error. [haven’t encountered any server-side errors in my testing, but of course
there will be some extremely edge cases that I’ve missed, but these will never occur in normal user
activity, only when requests are made directly to the API, which should never happen.

Possible Improvements

Here are the main improvements that I’d make from the issues made in my testing and evaluation.

e One of the missing components from my system is that there is no draw by repetition. This
effects the custom game section of the project but doesn’t affect a major part of the system,
the adventure mode. The adventure mode is not affected, as the player only moves on to the
next stage once they win a game, and the engine is coded to evaluate repeated positions much
lower, preventing draws in most cases.

o For the actual engine playstyle, the engine doesn’t play too human like, which was mentioned
by some of my testers, by exclamations of strange moves. Mostly this was caused by poor
performance, resulting in lower depth settings, but adding some neural network, trained on
real games would have made the engine play a lot more human like.

One of the largest bottlenecks of my system is the construction of the JavaScript Bigint, which is used
for the square collection class discussed in the design section. To get around this, I would have written
the engine in a language which supports strongly typed unsigned 64-bit integers like Java or C and its
derivatives, and compile the source code into intermediate WebAssembly bytecode, which could be
run directly in the browser.

60

Finley Cooper 7588 50639

To add the neural network, I would train the engine on a data set of games which have been analysed
by an existing engine. The nodes of the neural network would be the piece positions and the output
node would be the evaluation given by the engine. This wouldn’t replace the minimax algorithm, but
instead would replace the evaluation function which is conducted at each leaf node of the search, with
a function which uses the neural network weights to generate an evaluation.

From the advice from my testers, I would also make the website more accessible for navigation. The
website still can be navigated by any user, but the constant reloading of the page makes the website
feel more clunky, also I would investigate making the website more responsive for touchscreen and
different screen resolutions, but that would require a complete redesign of the drag-and-drop
behaviour of the board.

A major problem with WebAssembly is that with most translated language, to call a function, the
function must only take simple parameters like signed integers. Therefore, we must also be able to
encode and decode the board state, as WebAssembly functions must be stateless and not cause side-
effects. The encoder could encode the entire board state into integers by concatenating the binary
representation of the piece in each square of the board together using binary shifts. We use 5 bits for
each square, so 12 squares could be stored in one 64-bit unsigned integer. 6 of these integers could
represent the entire board, and other unsigned integers could be used to store the game state, and the
past game state stack in similar ways.

Here is a DFD showing what would need to be changed to instead use WebAssembly instead of
JavaScript, which would most likely be the most influential change for performance.

R

eact
App
Chess board ‘
Server ‘
: Game
Function calls state
Source Bytecode with integers as
Engine in written code) WebAssembly Static storage of parameters Gamestate-Integer
C++, Rust, Java, etc. Compiler bytecode encoder/decoder

\ J

For the actual engine code, apart from translating the code from TypeScript to C++, Rust, Java, etc.,
not much of the design would change. I would certainly make more use of the ability to perform
binary operations on integers larger than 32 bits, which would make the Bitboards faster so I would
maybe use them more, especially in the evaluation function, as they would carry much less of a
performance overhead.

61

Finley Cooper 7588 50639

5 Code

File Hierarchy Diagram

On the next page is a hierarchy diagram which shows all the files in the project. The lines between the
files and directories represent files within directories not the relationships between files. The files are
colour coded (I will give examples for each colour if the chart is being read in black-and-white). The
dark grey files are config files which are generally irrelevant to the algorithms and programming
structures accessed at A level. An example of this file is the ‘docker-compose.yaml’ file near the top
of the chart. Directories are coloured with a purple, for example the ‘Frontend’ file, and TypeScript
files are coloured in a light blue, for example index.tsx. TypeScript files ending in .tsx, rather than .ts
signifies that the files contains JSX for the GUI structure. Normal JavaScript files are coloured in
yellow, which is only the files knightMove.js and slidingPiecesMoves.js. Solid white files represent
files which are not meant to be read using a text editor for the purpose of the project (database, SVG
files) and I will not be including these files in the write up. Turquoise files such as app.py are files
written in Python and red files such as index.css are CSS files used for the styling of the GUI.

The dotted lines surrounding a group of files represent files stored in the same subdirectory which
have been groups to preserve space in the diagram. Parts of the diagram have been split up to stop the
diagram from becoming too long, with the frontend/src/routes and frontend/src/engine directories
being shown in separate diagrams below. Each file will be given a description, and the contents of the
file will be shown.

Files used solely for the development process, like code editor settings, .gitignore, .dockerignore files
have been omitted along with font files and SVG files.

62

Finley Cooper 7588 50639

File Descriptions

docker-compose.yaml — Config file which configures the Docker container.

frontend — A folder containing the files which are used to create the chess engine and GUI.
frontend/tsconfig.json — Config file which determine how TypeScript is compiled.
frontend/yarn.lock — Config file which keeps package versions constant.
frontend/vite.config.ts — Config files which determines how the Vite project will be built.
frontend/package.json — Config file which says which packages to use.
frontend/Dockerfile — Config file which determines how the frontend image will be built.
frontend/index.html — Almost fully empty HTML file which the React app is loaded into.
frontend/deployment/nginx.default.conf — Sets up how NGINX will handle web requests.
frontend/public — Empty directory which contains the built React app.

frontend/src — A folder containing the actual React app.

frontend/dist — An empty folder that will contain the output from the Vite building process.
frontend/src/main.tsx — The file where the React app is initialised and built from.
frontend/src/App.tsx — The file that imports the routes in the routes folder.
frontend/src/App.css — Stylesheet for styles used in the entire app.

frontend/src/index.css — Stylesheet for styles used in the entire website.
frontend/src/assets/VarelaRound-Regular.ttf — Font used on the website.
frontend/src/vite-env.d.ts — Adds support for TypeScript types for SVGs.
frontend/src/LoggedInContext.tsx — Creates the React context for the user API request.
frontend/src/LoggedInContextProvider.tsx — Makes an API request for the user info on page load.
frontend/src/engine — Folder which contains all the files for the actual chess engine program.

frontend/src/engine/Testing/perftTesting.ts — File which contains an algorithm for running automatic
PERFT tests.

frontend/src/engine/index.ts — Dummy file to indicate that the folder should be treated as a package.
frontend/src/engine/constants.ts — File containing constants used in the engine.
frontend/src/engine/Search.ts — File containing the minimax algorithm used to find the best move.
frontend/src/engine/SquareCollection.ts — File containing the SquareCollection class.
frontend/src/engine/Engine.ts — File containing the Engine class.

frontend/src/engine/Board.ts — File containing the Board class.

frontend/src/engine/Move.ts — File containing the Move class.

frontend/src/engine/Evaluation.ts — File containing algorithms to evaluate a position in a leaf node
when searching for the best move.

frontend/src/engine/Pieces — Folder containing all piece’s classes and move generation algorithms.

64

Finley Cooper 7588 50639

frontend/src/engine/Pieces/index.ts — File which chooses the Piece class to construct.

frontend/src/engine/Pieces/<Chess Piece>.ts — A group of files where each file contains a class for
initialising the piece given in the file name.

frontend/src/engine/Pieces/Empty.ts — A class generating a piece which represents an empty square.
frontend/src/engine/Pieces/BasePiece.ts — A file containing the abstract base class for each piece.

frontend/src/engine/Pieces/utils — Folder for algorithms used for generating moves in the piece
classes.

frontend/src/engine/Pieces/utils/index.ts — Contains algorithms for generating moves for sliding
pieces.

frontend/src/engine/Pieces/utils/precalculations — Folder containing files which are used for
calculations done before the project is run.

frontend/src/engine/Pieces/utils/precalculations/knightMoves.js — File which generates the knight
attacks for each square.

frontend/src/engine/Pieces/utils/precalculations/slidingPiecesMoves.js — File which generates the
sliding piece attacks for each square.

frontend/src/engine/Pieces/utils/precalculations/results.ts — File containing the results from the JS
files for use in the move generation algorithms.

frontend/src/components — Folder containing React classes used across multiple routes.
frontend/src/components/BoardElement — Folder containing files for creating the board GUI.

frontend/src/components/BoardElement/constants.tsx — File containing contsants for use in the
rendering of the board given by the engine.

frontend/src/components/BoardElement/pieces.svg — File containing SVGs for each piece.
frontend/src/components/BoardElement/index.css— File containing styles for creating the board.
frontend/src/components/BoardElement/Piece.tsx— React component for each piece.
frontend/src/components/BoardElement/index.ts— Component for the board and rendering process.
frontend/src/components/TextInput — Folder containing files for the text input component.
frontend/src/components/TextInput/index.ts — File containing the text input component.
frontend/src/components/TextInput/index.css — File containing the text input component styles.
frontend/src/routes — Folder containing components for each route.

frontend/src/routes/index.tsx — Folder which imports and reexports the routes for App.tsx.
frontend/src/routes/LoggedInRoute.tsx — Folder which handles redirection when not logged in.

frontend/src/routes/(Adventure/Authenication/Custom/Home/Review/Settings/Test/History) —
Folders which containing the component for each route discussed in the React Component chart
earlier.

frontend/src/routes/<route name>/index.js — File for each route which contains the constructor for
each route page.

65

Finley Cooper 7588 50639

frontend/src/routes/<route name>/index.css — File which contains the styles for each route.

frontend/src/routes/History/Game.tsx — File which contains a component for each element in the
history game list.

frontend/src/routes/Test/positions.ts— File which contains positions to be PERFT tested.
frontend/src/routes/Home/icons.svg — Images in the home route which are just for looking pretty.

frontend/src/routes/Custom/CustomisationSlider.tsx — Component for each slider on the Custom
route.

frontend/src/routes/Login/index.tsx — File for the rendering and checks for the login form.
frontend/src/routes/Signup/index.tsx — File for the rendering and checks for the signup form.

frontend/src/routes/ Adventure/AdventureResults — Folder containing code for generating the
component which shows the user statistic sheet when the adventure is completed.

backend — Folder containing the Python Flask app API.

backend/Dockerfile — Config file for creating the backend image.

backend/config.py — Config file for flask settings, app variables, and keys

backend/app.py — Main file for initialising the app and creating the API routes.
backend/requirements.txt — File for declaring which packages should be installed.
backend/decorators.py — File containing the function decorator for the authentication process.
backend/database — Folder containing code related to the database.

backend/database/ _init__.py — File which contains a database class which is acts as an interface for
making SQL queries indirectly in app.py on the database.

backend/database/table_classes.py — Declares classes used in the __init__ file for passing back to
app.py to structure data coming from the database more rigorously.

backend/database/adventure_script.py — Exports the story script for inserting into the database.

backend/database/create_tables.py — Creates the SQL tables, the relations between them and inserts
the adventure script into the campaign levels table.

backend/database/data/data.db —SQLite3 Database file
backend/crypto_auth — Folder containing algorithms for password hashing and message signing.

backend/crypto_auth/elliptic_curve.py — File which defines the elliptic curve class and methods for
signing a byte message.

backend/crypto_auth/__init__.py — File which contains functions for signing a Python dictionary
using the functions on the elliptic curve class and uses the SHA256 algorithm to create password
hashes and salts.

66

Finley Cooper 7588 50639

Cover Sheet

The raw code for each of these files is in the appendix of this project. The order of the files is
(roughly) the order the of file description for ease of navigation.

Files and directories of note:

backend/crypto_auth/elliptic_curve.py | Page 158 — Page 161
This file contains all the cryptography related algorithms in a class which I have
discussed in pseudocode and flowcharts in the design section extensively.
Complex mathematical operations (group theory and elliptic curves)

- frontend/src/engine/Board.ts | Page 82 — Page 89
This file contains the central Board class for the engine and contains many of the
algorithms and data structures discussed.
Complex OOP model, aggregation, composition, hashing, stacks, bitfields, dynamic
object generation.

- Files in frontend/src/engine/Pieces | Page 92 — Page 101
This set of files contains definitions for the OOP model for each chess piece.
Abstract base class, inheritance, polymorphism.

- frontend/src/engine/Search.ts | Page 76 — Page 78
This file contains the main algorithm of the project, the alpha-beta minimax
algorithm.
Complex-user defined algorithm, insertion sort, recursive algorithms.

- backend/app.py | Page 144 — Page 149
Contains functions for the API.
Complex client-server model, server-side scripting using request and response
objects, parameterised Web service APIs and parsing JSON.

- frontend/src/engine/Engine.ts | Page 79 — Page 82
Contains a class which is the interface between the web app and the engine, also
contains algorithms pertaining to the engine customisation.
Interfaces, complex mathematical operations

- backend/decorators.py | Page 149 — Page 150
Handles logic for the token scopes and authentication.
Complex client-server model

- backend/database | Page 150 — Page 159
Contains the SQL queries talked about earlier and contains a class-based interface
between app.py and the database.
Cross-table parameterised SQL, complex data model in database with several
interlinked tables

Overall, most of the complexity of the project is contained in the frontend/src/engine folder, and all
other files are supporting code for the GUI, the server, and more bells and whistles which
differentiates my project from a standard chess engine.

67

Finley Cooper 7588 50639

Filetypes

Files ending in .ts are standard TypeScript files.

Files ending in .tsx are TypeScript files which may use or handle JSX.

Files ending in .py are Python files

Files ending in .js are JavaScript files

Files ending in .svg are vector images

Files ending in .css are stylesheets for the GUI

Files ending in .txt, .json, .yaml, .d.ts, .config.ts, .conf, or Dockerfile are config files

Attributions and clarity

As with all programming projects, some of the inspiration for techniques used in the engine were
taken from existing sources (Chess Programming Wiki). However, all code below is my own unless
commented otherwise. The complex mathematical equations used for the elliptic curve algorithm are
not my own to ensure compliance with the FIPS 186-4 standard, however all implementation of the
methods are my own. The email regex used is not my own, which is clearly commented in the code as
the RFC 822 Compliant email regex by Cal Handerson. Some of the GUI work (the text inputs) and
Docker and NGINX configuration were borrowed from a previous project I had done, although it is
all still my own code.

68

Finley Cooper 7588

Appendix

docker-compose.yaml

50639

1. version: '3.2'

2. services:

3. backend:

4. build:

5. context: ./backend

6. dockerfile: Dockerfile

7. image: nea-backend

8. volumes:

9. - type: volume

10. source: sqlite-db

11. target: /backend/database/data
12. frontend:

13. build:

14. context: ./frontend

15. dockerfile: Dockerfile
16. image: nea-frontend

17. ports:

18. - 8000:80

19.

20. volumes:

21. sqlite-db:

22,
frontend/tsconfig.json

1. {

2. "compilerOptions™: {

3. "target": "ESNext",

4, "useDefineForClassFields": true,
5. "lib": [

6. "DOM",

7. "DOM.Iterable",

8. "ESNext"

9. 1,
10. "allowds": false,
11. "skipLibCheck": true,
12. "esModuleInterop": false,
13. "allowSyntheticDefaultImports": true,
14. "strict": true,
15. "forceConsistentCasingInFileNames": true,
16. "module”: "ESNext",
17. "moduleResolution”: "Node",
18. "resolvelsonModule": true,
19. "isolatedModules": true,
20. "noEmit": true,
21. "jsx": "react-jsx",
22. 3},
23. "include": [
24. "src"
25. 1,
26. "references”: [
27. {
28. "path": "./tsconfig.node.json"
29. }
3.]
31. }
32.

frontend/vite.config.ts

1
2.
3.
4

. import { defineConfig } from "vite"

export default defineConfig({
})

69

Finley Cooper 7588 50639
frontend/package.json
1. {
2. "name": "frontend",
3. "private": true,
4. "version": "0.0.0",
5. "type": "module",
6. "scripts": {
7. "dev": "vite",
8. "build": "tsc && vite build",
9. "preview": "vite preview"
0. },
11. "dependencies": {
12. "react": "~18.2.0",
13. "react-dom": "~18.2.0",
14. "react-router-dom": ""6.10.0"
5. },
16. "devDependencies": {
17. "@types/react": "~18.0.28",
18. "@types/react-dom": "~18.0.11",
19. "@vitejs/plugin-react-swc": "*3.0.0",
20. "typescript": "~4.9.3",
21. "vite": "~4.2.0"
22. %}
23. }
24,
frontend/Dockerfile
1. # node base image
2. FROM node:16-alpine as vite-build
3.
4. # set work directory
5. WORKDIR /frontend
6.
7. # set environment variables
8. ENV PATH ./node_modules/.bin$PATH

10. # copy project
11. COpPY . ./

13. # install and build vite app
14. RUN yarn install
15. RUN yarn build

17. # start and configure nginx

18. FROM nginx:stable-alpine

19. COPY --from=vite-build /frontend/dist /usr/share/nginx/html

20. COPY /deployment/nginx.default.conf /etc/nginx/conf.d/default.conf

frontend/index.html

1. <!DOCTYPE html>

2. <html lang="en">

3.

4. <head>

5. <meta charset="UTF-8" />

6. <meta name="viewport" content="width=device-width, initial-scale=1.0" />
7. <title>thochess - Chess Learning</title>

8. </head>

9.

10. <body>

11. <div id="root"></div>

12. <script type="module" src="/src/main.tsx"></script>

70

Finley Cooper 7588

13. </body>

14.

15. </html>

16.

50639

frontend/development/nginx.default.conf

1. server {

2. listen 80;

3. server_name localhost;

4.

5. root /usr/share/nginx/html;

6. index index.html;

7. error_page 500 502 503 504 /50x.html;
8.

9. location / {
10. try_files $uri /index.html;
11. add_header Cache-Control "no-cache";
12. }
13.
14. location /assets {

15. expires 1y;

16. add_header Cache-Control "public";
17. }

18.

19. location /api {

20. proxy_pass http://backend:5000/api;
21. }

22.

23. location /s/ {

24. proxy_pass http://backend:5000/s/;
25. }

26. }

27.

frontend/src/main.tsx

import

)

RO WVWOKONOOTUVTE WNER

[

import React from 'react’
import ReactDOM from 'react-dom/client’

{ BrowserRouter } from 'react-router-dom’

import App from './App'

ReactDOM. createRoot (document.getElementById('root') as HTMLElement).render(
<BrowserRouter>
<App />
</BrowserRouter>

frontend/src/App.tsx

import
import

import
import
import

ONOUVThS WN R

import

{ Suspense } from 'react’
{ Route, Routes } from "react-router-dom";

{ routes, loggedInRoutes } from "./routes"
LoggedInRoute from './routes/LoggedInRoute’;

LoggedInContextProvider from './LoggedInContextProvider';

'./App.css'

11. function App() {
12. return (
13. <div className="App">

71

Finley Cooper 7588 50639
14. <Suspense>

15. <Routes>

16. {routes.map((route, index) => (

17. <Route

18. key={"path-${route.path}-${index} }
19. path={route.path}

20. element={<route.element />}

21. />

22.)}

23. {loggedInRoutes.map((route, index) => (
24. <Route key={"path-${route.path}-${index} } path={route.path}
element={<LoggedInRoute />}>

25. <Route path={route.path} element={
26. <LoggedInContextProvider>

27. <route.element />

28. </LoggedInContextProvider>

29. Y />

30. </Route>

31.)}

32. </Routes>

33. </Suspense>

34. </div>

35.)

36. }

37.

38. export default App

39.

frontend/src/App.css

1. @font-face {
2. font-family: "Varela Round";
3. font-weight: 400;
4. font-style: normal;
5. src: local("Verale Round"), url(./assets/VarelaRound-Regular.ttf) format("truetype");
6. }
7.

8. #root {

9. margin: 0 auto;

10. height: 100%;

11. width: 100%;

12. font-family: "Varela Round", sans-serif;
13. }

14.

15. html,

16. body,

17. #root,

18. .App {

19. margin: 0;
20. height: 100%;
21. width: 100%;

22. }
23.
24. button {

25. color: #525151;
26. background-color: #faflff;

27. border: none;

28. padding: 10px 20px 10px 20px;
29. font-size: 1.1lem;

30. border-radius: 20px;

31. margin-top: 15px;

32. cursor: pointer;

33. }

72

Finley Cooper 7588

frontend/src/vite-env.d.ts

50639

1. /// <reference types="vite/client" />

frontend/src/LoggedInContext.tsx

1. import { createContext } from "react"

2.

3. export type LoggedInContextType = { id: number, displayName: string, levelid: string }
4.

5. export const defaultLoggedInContext: LoggedInContextType = {

6. id: -1,

7. displayName: ""

8. levelid: "o"

9. }
10.

11. export const LoggedInContext = createContext(defaultLoggedInContext)

frontend/src/LoggedInContextProvider.tsx

1. import React from "react"
2. import { LoggedInContext, LoggedInContextType, defaultLoggedInContext } from
"./LoggedInContext"

3.
4. interface Props {

5 children: React.ReactNode
6. }

7.

8. interface State {

9. userData: LoggedInContextType
10. }

12. class LoggedInContextProvider extends React.Component<Props, State> {
13. constructor(props: Props) {
14. super(props)

16. this.state = {

17. userData: defaultlLoggedInContext
18. }

19. }

21. componentDidMount () {

22. fetch("/api/users/@me").then(resp => resp.json()).then(data => {
23. if (!data.error) {

24. this.setState({

25. userData: {

26. id: data.data.id,

27. displayName: data.data.name,

28. levelid: data.data.level id

30. 15

32. 15
33. }

35. render() {

36. return (

37. <LoggedInContext.Provider value={this.state.userData}>
38. {this.props.children}

39. </LoggedInContext.Provider>

73

Finley Cooper 7588

44. export default LoggedInContextProvider
45.

50639

frontend/src/engine/Testing/perftTesting.ts

import Board from '../Board’

1
2
3. // Function implimentation copied from a function written in C
4. // https://www.chessprogramming.org/Perft

5. export function perft(depth: number, board: Board) {

6 const maxDepth = depth

7

8

9

function testAtDepth(depth: number) {
. let movelList = []
10. let nodes = 0

11.

12. if (depth == 0) {

13. return 1

14. }

15.

16. movelList = board.generatelLegalMoves()
17.

18. for (let i = @; i < moveList.length; i++) {
19. board.playMove(moveList[i])

20. nodes += testAtDepth(depth - 1)
21. board.unplayMove(movelList[i])

22. }

23.

24,

25. return nodes

26. }

27. const result = testAtDepth(depth)

28. return result

29. }

30.

frontend/src/engine/index.ts

import Engine from "./Engine";

1
2.
3. export default Engine
4.

frontend/src/engine/constants.ts

1. export enum Pieces {

2 empty = 0,

3 pawn,

4. rook,

5. knight,

6 bishop,

7 queen,

8 king,

9. black = 8,

10. white = 16,

11. all = o,

12. }

13.

14. export const StartingBoard = new Uint8Array([
15. Pieces.white | Pieces.rook,
16. Pieces.white | Pieces.knight,
17. Pieces.white | Pieces.bishop,
18. Pieces.white | Pieces.queen,
19. Pieces.white | Pieces.king,

74

Finley Cooper 7588

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
a7.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.

Pieces.white | Pieces.bishop,

Pieces.white | Pieces.knight,

Pieces.white | Pieces.rook,

...(new Array(8).fill(Pieces.white | Pieces.pawn)),
...(new Array(32).fill(Pieces.empty)),

...(new Array(8).fill(Pieces.black | Pieces.pawn)),
Pieces.black | Pieces.rook,

Pieces.black | Pieces.knight,
Pieces.black | Pieces.bishop,
Pieces.black | Pieces.queen,
Pieces.black | Pieces.king,
Pieces.black | Pieces.bishop,
Pieces.black | Pieces.knight,
Pieces.black | Pieces.rook,

D

// From https://www.chessprogramming.org/Simplified_Evaluation_Function
export const PieceSquareTables = {
[Pieces.pawn]: [
0, 0, 0, 0, 9, 0, 0, O,
50, 50, 50, 50, 50, 50, 50, 50,
le, 10, 20, 30, 30, 20, 10, 10,
, 5, 1o, 25, 25, 10, 5, 5,
, 0, 0, 20, 20, 0, 0, O,
, -5, -10, 0, 0, -10, -5, 5,
, 10, 10, -40, -40, 10, 10, 5,
, 0, 0, 0, 0, 0, 0, O

o UuTuTowun

1,
[Pieces.knight]: [
-50, -40, -30, -30, -30, -30, -40, -50,
-40, -20, 0, 0, 0, 0, -20, -49,
-390, 0, 1o, 15, 15, 10, 0, -39,
-30, 5, 15, 20, 20, 15, 5, -30,
-390, o, 15, 20, 20, 15, 0, -39,
-30, 5, 1o, 15, 15, 10, 5, -30,
-40, -20, 0, 5, 5, 0, -20, -40,
-50, -40, -30, -30, -30, -30, -40, -50
1,
[Pieces.bishop]: [
-20, -10, -10, -10, -10, -10, -10, -20,
-10, o0, 0, 0, 0, 0, 0, -10,
-10, o0, 5, 10, 10, 5, 0, -10,
-10, 5, 5, 10, 10, 5, 5, -10,
-10, o, 1o, 10, 10, 10, 0, -10,
-10, 10, 10, 10, 10, 10, 10, -10,
-10, 5, o, o0, 0, 0, 5, -10,
-20, -1o0, -10, -10, -10, -10, -10, -20
1,
[Pieces.rook]: [
@, 0, 0, 6, 0, 0, 0, 0O,
5, 10, 10, 10, 10, 10, 10, 5,
'5) 0: @) 0: 6) 9: 6) '5)
-5, 9) 9: 9) @, 9, @, -5,
'5) 0: @) 0: 6) 9: 6) '5)
-5, 9) 9: 9) @, 9, @, -5,
'5) 0: @) 0: 6) 9: 6) '5)
e, 0, 0, 5, 5, 0, 0, ©
1,
[Pieces.queen]: [
-20, -1o0, -10, -5, -5, -10, -10, -20,
-10, o0, 0, 0, 0, 0, 0, -10,
-10, o0, 5, 5, 5, 5, o0, -10,
'5: 0: 5: 5: 5) 5: @) '5)
@, @, 5) 5) 5) 5: @J -5)
-10, 5, 5, 5, 5, 5, o0, -10,
-10, o0, 5, o0, 0, 0, 0, -10,
-20, -1o0, -10, -5, -5, -10, -10, -20
1,
[Pieces.king]: [

50639

75

Finley Cooper 7588 50639

90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
lo4.
105.
106.
107.
108.
109.
110.

-30, -40, -40, -50, -50, -40, -40, -30,
-30, -40, -40, -50, -50, -40, -40, -30,
-30, -40, -40, -50, -50, -40, -40, -30,
-30, -40, -40, -50, -50, -40, -40, -30,
-20, -30, -30, -40, -40, -30, -30, -20,
-10, -20, -20, -20, -20, -20, -20, -10,
20, 20, 0, 0, 0, 0, 20, 20,
20, 30, 10, o, o, 10, 30, 20

]J

[Pieces.king + 1]: [
-50, -40, -30, -20, -20, -30, -40, -50,
-30, -20, -10, 0, 0, -10, -20, -30,
-30, -10, 20, 30, 30, 20, -10, -30,
-30, -10, 30, 40, 40, 30, -10, -39,
-30, -10, 30, 40, 40, 30, -10, -30,
-30, -10, 20, 30, 30, 20, -10, -39,
-30, -30, 0, 0, 0, 0, -30, -30,
-50, -30, -30, -30, -30, -30, -30, -50

frontend/src/engine/Search.ts

ONOUVIhA WNR

9.

import Board from "./Board";

import Evaluation from "./Evaluation";

import Move from "./Move";

import { pieceValue } from "./Evaluation";

import { Customisation, defaultCustomisation } from
import { PieceSquareTable } from "./Engine";

./Engine”;

function sortMoves(board: Board, moves: Array<Move>) {
// Length of move array is usually around 3@ per position so insertion sort is the

choice for optimisation

10.

// We sort the moveGoodnessArray and the newOrder at the same time so we can just

return the indexes of the moves which should be looked at first

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

const moveGoodnessArray = moves.map(move => getEstimatedMoveGoodness(board, move))
const newOrder = Array(moves.length)

for (let i = @; i < newOrder.length; i++) {
newOrder[i] = i

¥
let i =09

while (i < moves.length) {
let j =1
while (j > @ && moveGoodnessArray[j - 1] > moveGoodnessArray[j]) {
[newOrder[j], newOrder[j - 1]] = [newOrder[j - 1], newOrder[j]];
[moveGoodnessArray[j], moveGoodnessArray[]j - 1]] = [moveGoodnessArray[j - 1],

moveGoodnessArray[j]];

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

return newOrder.reverse()

}

function getEstimatedMoveGoodness(board: Board, move: Move) {
let estimatedMoveGoodness = 0

const destinationPiece = board.getSquares()[move.getDestinationSquare()]
const sourcePiece = board.getSquares()[move.getSourceSquare()]

// Capture difference

76

Finley Cooper 7588

41. estimatedMoveGoodness += Math.max(pieceValue[destinationPiece.getType()] -
pieceValue[sourcePiece.getType()], ©)

42.

43. if (move.getFlag() & 0b1000) {

44. estimatedMoveGoodness += pieceValue[move.getPromotionPiece()]
45, }

46. if (move.isCapture()) {

47. estimatedMoveGoodness += 500

48. }

49,

50. return estimatedMoveGoodness

51. }

52.

53. function simplifyPosition(board: Board, alpha: number, beta: number, customisation:
Customisation, pieceSquareTables: PieceSquareTable) {

54. const evaluation = Evaluation(board, customisation, pieceSquareTables)
55.

56. if (evaluation >= beta) {

57. return beta

58. }

59. if (evaluation > alpha) {

60. alpha = evaluation

61. }

62.

63. const captures = board.generatelLegalMoves().filter(move => move.isCapture())
64.

65. const estimatedMoveOrder = sortMoves(board, captures)

66.

67. for (let i = @; i < captures.length; i++) {

68. board.playMove(captures[estimatedMoveOrder[i]])

69. const evaluation = -simplifyPosition(board, -beta, -alpha, customisation,
pieceSquareTables)

70. board.unplayMove(captures[estimatedMoveOrder[i]])

71.

72. if (evaluation >= beta) {

73. return beta

74. }

75. if (evaluation > alpha) {

76. alpha = evaluation

77. }

78. }

79.

80. return alpha

81. }

82.

83. function search(board: Board, customisation: Customisation = defaultCustomisation,
pieceSquareTables: PieceSquareTable) {

50639

84. let bestMove = new Move(©) // Dummy move
85. const maxDepth = customisation.depth
86. const checkmateEval = -99999999999
87.
88. function searchDepth(board: Board, depth: number, alpha: number, beta: number) {
89. if (depth == 0) {
90. return simplifyPosition(board, alpha, beta, customisation, pieceSquareTables)
91. }
92.
93. const moves = board.generatelLegalMoves()
94.
95. if (moves.length === 0) {
96. if (board.isCheck()) {
97. return checkmateEval + depth // Checkmate
98. }
99. return @ // Stalemate
100. }
101.
102. let seenMoves = moves.filter(_ => {
103. return Math.random() * 100 > customisation.blindSpots * (1 + ((depth - 1) /
maxDepth))
104. 13
105.

77

Finley Cooper 7588 50639
106. let estimatedMoveOrder: Array<number>

107.

108. if (seenMoves.length === 0) {

109. estimatedMoveOrder = [0]

110. seenMoves = [moves[9]]

111. }

112. else {

113. estimatedMoveOrder = sortMoves(board, seenMoves)
114. }

115.

116.

117. for (let i = 0; i < estimatedMoveOrder.length; i++) {
118. const move = seenMoves[estimatedMoveOrder([i]]
119. board.playMove(move)

120.

121. let evaluation;

122.

123. if (board.hasPositionOccurredBefore() && depth < maxDepth) {
124. board.unplayMove (move)

125. return @ // Cut the branch as a draw

126. }

127. else {

128. evaluation = -searchDepth(board, depth - 1, -beta, -alpha)
129. }

130.

131. board.unplayMove (move)

132.

133. if (evaluation >= beta) {

134. if (depth === maxDepth) {

135. bestMove = move

136. }

137. // Cut this branch. This branch is now a leaf. The move before was too
good, so our opponent will never get to this postion.

138. return beta

139. }

140.

141. if (evaluation > alpha) {

142. if (depth === maxDepth) {

143. bestMove = move

144. }

145. alpha = evaluation

146. }

147. }

148.

149. return alpha

150. }

151.

152. searchDepth(board, maxDepth, -Infinity, Infinity)

153.

154. if (bestMove.datum === @) { // Check if it is still the dummy move
155. throw new Error("Move calculated was invalid!")

156. }

157.

158. return bestMove

159. }

160.

161. export default search

162.

frontend/src/engine/SquareCollection.ts

export default class SquareCollection {
private bitboard: bigint
private iteratingBoard: bigint

constructor(bitboard: bigint = @n) {

1.
2
3
4,
5
6
7 this.bitboard = bitboard

78

Finley Cooper 7588 50639
8. this.iteratingBoard = bitboard
9. }
10.
11. getBitboard() {
12. return this.bitboard
13.
14. }
15.
16. add(square: number) {
17. this.bitboard |= 1n << BigInt(square)
18. }
19.
20. remove(square: number) {
21. this.bitboard &= ~(1n << BigInt(square))
22. }
23.
24. or(collection: SquareCollection) {
25. return new SquareCollection(this.bitboard | collection.bitboard)
26. }
27.
28. and(collection: SquareCollection) {
29. return new SquareCollection(this.bitboard & collection.bitboard)
30. }
31.
32. not() {
33. // Not the first 64 bits of the bitboard (we can't use ~ because bigint is a signed
2's complement number)
34. return new SquareCollection((~this.bitboard) & Oxffffffffffffffffn)
35, }
36.
37. *[Symbol.iterator]() {
38. for (let i = 0; i < 64; i++) {
39. if (1 == 0) {
40. this.iteratingBoard = this.bitboard
41.
42. if (this.iteratingBoard & 1n) {
43. yield i
44, }
45. this.iteratingBoard >>= 1n
46. }
47. this.iteratingBoard = this.bitboard
48. }
49. }
50.

frontend/src/engine/Engine.ts

1. import Board from './Board’

2. import Move, { Pieces } from './Move'

3. import Search from './Search’

4. import { StartingBoard } from './constants'
5. import { PieceSquareTables } from './constants'
6.

7. export interface Customisation {

8. depth: number

9. aggressiveness: number,

10. tradeHappy: number

11. positionalPlay: number

12. blindSpots: number

13. }

14.

15. export const defaultCustomisation: Customisation = {
16. depth: 3,

17. positionalPlay: 100,

18. aggressiveness: 50,

19. tradeHappy: 50,

20. blindSpots: @

21. }

79

Finley Cooper 7588 50639

22.

23. export type PieceSquareTable = Array<{ [key: number]: Array<number> }>
24,

25. class Engine {

26. public board: Board

27. private customisation: Customisation

28. private pieceSquareTables: PieceSquareTable

29. private moveHistory: Array<Move>

30.

31.

32. static fromStartingPosition(customisation: Customisation = defaultCustomisation) {

33. const board = new Board(StartingBoard, 0x000)

34. return new this(board, customisation)

35. }

36.

37. constructor(board: Board, customisation: Customisation = defaultCustomisation,
moveHistory = []) {

38. this.board = board

39. this.customisation = customisation

40. this.moveHistory = moveHistory

41.

42. let purePieceSquareTables: PieceSquareTable = [{}, PieceSquareTables]

43,

44. for (let i = 9; i < Object.keys(PieceSquareTables).length; i++) {

45, const table = PieceSquareTables[i + 1]

46.

47. let reversedTable = []

48.

49. for (let j = 0; j < table.length; j++) {

50. reversedTable.push(table[table.length - 1 - j])

51. }

52.

53. purePieceSquareTables[0][i + 1] = reversedTable

54. }

55.

56. this.pieceSquareTables = this.addNormalNoise(purePieceSquareTables)

57. }

58.

59. public getCustomisation() {

60. return this.customisation

61. }

62.

63. public setAggression(sideTobeAggressive: number): void {

64. // Add aggression for own table only

65. const tableIndex: number = sideTobeAggressive === Pieces.white ? 0 : 1

66.

67. for (const key in this.pieceSquareTables[tableIndex]) {

68. this.pieceSquareTables[tableIndex][key] =
this.pieceSquareTables[tableIndex][key]

69. .map((value, index) => {

70. return value + Math.floor(sideTobeAggressive ? (index / 8) : (63 -
index / 8)) * ((this.customisation.aggressiveness - 50) / 100) * 20

71. 1D)

72. }

73. }

74.

75. private addNormalNoise(tables: PieceSquareTable): PieceSquareTable {

76. // We will add normally distributed noise to each table depending on the
positionalPlay value

77.

78. // Get a random number in the range (-w,x) distributed N(©,1)

79. const StandardNormalSample = () => {

80. const ul = Math.random()

81. const u2 = Math.random()

82.

83. // Use the Box-Muller Transform, which is bijection from [0,1]"2 to (-e,~) with
a standard normal distribution

84. // https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

85. return Math.sqrt(-2 * Math.log(ul)) * Math.cos(u2 * 2 * Math.PI)
86. }

80

Finley Cooper

87.
88.

//

be added

89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.

if

7588 50639

If this.customisation.positionalPlay is 100 then variance = © so no noise should

(this.customisation.positionalPlay === 100) {
return tables

When strength == @, an addition of 50 noise should only happen in 1% of cases
So if X - N(@, variance_max) then P(x > 50) = 0.01

(X - u)/sd =12

50/sd_max = 2.3263 (from a level maths formula booklet)

sd_max = 50/2.3263 = 21.49

We'll say sd_max should be about 20 for the weakest engine

f: [0, 100) -> (0, 20]

We'll choose a inverse linear relationship between strength and standard

deviation, so f(x) = 20 - x/5
const standard_deviation = 20 - this.customisation.positionalPlay / 5

lo1l.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.

tables.forEach(table => {

b))

for (const key in table) {
table[key] = table[key].map(value => {
return value + (StandardNormalSample() * standard_deviation)

b))

return tables

getBestMove(): Move {
return Search(this.board, this.customisation, this.pieceSquareTables)

¥

async computerMove(): Promise<Move> {
return new Promise((resolve) => {

b
}

setTimeout(() => {
const move = this.getBestMove()
this.board.playMove(move)
this.moveHistory.push(move)
resolve(move)

}, 20)

playerUCIMove(from: number, to: number): Move {
const move = this.board.playUCIMove(from, to)
this.moveHistory.push(move)

return move

¥

getMovelistString(): string {
return this.moveHistory.reduce((moveString, currMove) => {

return moveString +=

*${decToCoord(currMove.getSourceSquare())}${decToCoord(currMove.getDestinationSquare())} °

140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.

1
}

static

return string.split(

b))
¥

"").slice(®, -1) // Remove extra space at the end

moveHistoryStringToUCI(string: string): number[][] {
" ").map(move => {

const sourceSquare = move.slice(@, 2)

const destSquare = move.slice(-2)

return [coordTodec(sourceSquare), coordTodec(destSquare)]

function coordTodec(coord: string): number {

81

Finley Cooper 7588

154.
155.
156.
157.
158.
159.
160.
l61.
162.
163.
164.
165.

}

const file = coord.charCodeAt(9) - 97
const rank = Number(coord[1]) - 1

return rank * 8 + file

function decToCoord(square: number): string {

}

return " ${String.fromCharCode(97 + (square % 8))}${Math.floor(square / 8) + 1}°

export default Engine

50639

frontend/src/engine/Board.ts

\(e]

oONOUVIhA WNBR

import { Pieces } from './constants'

import Move from './Move'

import SquareCollection from './SquareCollection'
import Piece from './Pieces’

import BasePiece from './Pieces/BasePiece’

class Board {

private sideToMove: number

private sideToMoveIndex: number

private pastBoards: Array<number>

private epFile: number

private castlingRights: number

private pieceCapturedPlyBefore: number
private pastGameStateStack: Array<number>

private square: Array<BasePiece>
private collections: Array<Array<SquareCollection>>

constructor(binaryBoard: Uint8Array, gameState: number) {
this.pastGameStateStack = [] // LIFO stack
this.pastBoards = [] // LIFO stack

this.sideToMoveIndex = (gameState & Obl) // © is white and 1 is black
this.sideToMove = this.sideToMoveIndex ? Pieces.black : Pieces.white
this.epFile = (gameState & 0b11110) >> 1

this.castlingRights = (gameState & ©b111100000) >> 5
this.pieceCapturedPlyBefore = (gameState & 0b111000000000) >> 9

this.square = Array(64).fill(new Piece.Empty())

this.collections = [

[new SquareCollection(), new SquareCollection()], // All : index ©
[new SquareCollection(), new SquareCollection()], // Pawns : index 1
[new SquareCollection(), new SquareCollection()], // Rooks : index 2
[new SquareCollection(), new SquareCollection()], // Knights : index 3
[new SquareCollection(), new SquareCollection()], // Bishops : index 4
[new SquareCollection(), new SquareCollection()], // Queens : index 5
[new SquareCollection(), new SquareCollection()], // Kings : index 6

for (let i = @; i < binaryBoard.length; i++) {
this.square[i] = Piece.FromBinary(binaryBoard[i])

if (binaryBoard[i] !== 0) {

const colourIndex = +this.square[i].isColour(Pieces.black)
this.collections[this.square[i].getType()][colourIndex].add(i)

}

this.updateAllPieceCollection()

82

Finley Cooper 7588 50639

54. hasPositionOccurredBefore(): boolean {
55. return this.pastBoards.includes(this.hashBoard())
56. }
57.
58. getCollections(): Array<Array<SquareCollection>> {
59. return this.collections
60. }
61.
62. getEpFile(): number {
63. return this.epFile
64. }
65.
66. getSquares(): Array<BasePiece> {
67. return this.square
68. }
69.
70. getSideToMove(): number {
71. return this.sideToMove
72. }
73.
74. getSideToMoveIndex(): number {
75. return this.sideToMoveIndex
76. }
77.
78. getCastlingRights(): number {
79. return this.castlingRights
80. }
81.
82. private updateAllPieceCollection() {
83. this.collections[Pieces.all] = [new SquareCollection(), new SquareCollection()]
84. for (let i = 1; i < this.collections.length; i++) {
85. for (let j = 0; j < 2; j++) {
86. this.collections[Pieces.all][]j] =
this.collections[Pieces.all][j].or(this.collections[i][j])
87.
88. }
89. }
90.
91. getGameState() {
92. return this.sideToMoveIndex | (this.epFile << 1) | (this.castlingRights << 5) |
(this.pieceCapturedPlyBefore << 9)
93.
94.
95. playUCIMove(from: number, to: number) {
96. let move: Move
97.
98. const movedPiece = this.square[from]
99. const destPiece = this.square[to]
100.
101. // Double pawn move - If we're moving a pawn and it moves 16 squares
102. if (movedPiece.getType() == Pieces.pawn && Math.abs(from - to) === 16) {
103. move = Move.fromCharacteristics(to, from, false, true)
104. }
105.
106. // En passant - If we're moving a pawn and it moves diagonally to an empty square
107. else if (movedPiece.getType() == Pieces.pawn && destPiece.getType() == Pieces.empty
&& [7, 9].includes(Math.abs(from - to))) {
108. move = Move.fromCharacteristics(to, from, true, false, true)
109. }
110.
111. // Promotion
112. else if (movedPiece.getType() == Pieces.pawn && Math.floor(to / 8) % 7 == 0) {
113. if (this.square[to].getType() === Pieces.empty) {
114. move = Move.fromCharacteristics(to, from, false, false, false, @, 0boll) //
ALways promote to a queen (for the user)
115. }
116. else {
117. move = Move.fromCharacteristics(to, from, true, false, false, 0, 0b0l1l)
118. }
119. }

&3

Finley Cooper 7588 50639

120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.

¥

// Castling KS
else if (movedPiece.getType() == Pieces.king && (to - from) === 2) {
move = Move.fromCharacteristics(to, from, false, false, false, 1)

¥

// Castling QS

else if (movedPiece.getType() == Pieces.king && (to - from) === -2) {
move = Move.fromCharacteristics(to, from, false, false, false, 2)

}

// Capture

else if (this.square[to].getType() !== Pieces.empty) {

move = Move.fromCharacteristics(to, from, true)
// Quiet Move
else {

move = Move.fromCharacteristics(to, from)
}

this.playMove(move)

return move

private hashBoard(): number {

return this.square.reduce((running_total, currentPiece, index) => {
return running_total ”~ (currentPiece.datum << (index >> 1)) // max index is 63,

so max (index >> 1) is 31, within the javascript 1limit of 32 bits for bitwise operations

147.
148.
149.
150.
151.
stack
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.

¥

}, this.getGameState())

playMove(move: Move) {

// Calculate the current game state and push it to the top of the pastGameState

this.pastGameStateStack.push(this.getGameState())
this.pastBoards.push(this.hashBoard())

const flag = move.getFlag()

const dest = move.getDestinationSquare()

const source = move.getSourceSquare()

const piece = this.square[source]

const colourOffset = piece.isColour(Pieces.white) ? @ : 56
this.pieceCapturedPlyBefore = Pieces.empty

// Remove piece from source square

// In the square-oriented data structure

this.square[source] = new Piece.Empty()

// And in the piece-oriented data structure
this.collections[piece.getType()][piece.getColourIndex()].remove(source)

// Add the piece to the destination square. We will have to check for flag

scenarios, however.

173.
174.
175.
176.
177.
178.
179.

// En passant flag
if (flag === 0bo101) {
const enPassantSquare = dest + (piece.isColour(Pieces.white) ? -8 : 8)

// Only pawns can be en-passanted

this.collections[Pieces.pawn][piece.getOpponentColourIndex()].remove(enPassantSquare)

180.
181.
182.
183.
184.
185.

this.square[enPassantSquare] = new Piece.Empty()

¥

// Castling - KS
else if (flag === 0b0010) {

84

Finley Cooper 7588 50639

186. this.collections[Pieces.rook][piece.getColourIndex()].remove(7 + colourOffset)
187. this.collections[Pieces.rook][piece.getColourIndex()].add(5 + colourOffset)
188.

189. this.square[7 + colourOffset] = new Piece.Empty()

190. this.square[5 + colourOffset] = new Piece.Rook(piece.getColour())

191. }

192.

193. // Castling - QS

194. else if (flag === 0b0011) {

195. this.collections[Pieces.rook][piece.getColourIndex()].remove(@ + colourOffset)
196. this.collections[Pieces.rook][piece.getColourIndex()].add(3 + colourOffset)
197.

198. this.square[@ + colourOffset] = new Piece.Empty()

199. this.square[3 + colourOffset] = new Piece.Rook(piece.getColour())

200. }

201.

202.

203. // If the move is a capture we will have to remove the captured piece from its
collection (unless en-passant, but that is handled seperately)

204. else if (move.isCapture()) {

205. const capturedPiece = this.square[dest]

206.

207. if (capturedPiece.getType() === Pieces.rook) {

208. const shift = capturedPiece.isColour(Pieces.white) ? 0 : 2

209.

210. if (dest + colourOffset - 56 === 7) {

211. // Remove KS castling rights

212. this.castlingRights |= @b@eO1 << shift

213.

214. else if (dest + colourOffset - 56 === 0) {

215. // Remove QS castling rights

216. this.castlingRights |= @b0010 << shift

217. }

218. }

219.

220.

this.collections[capturedPiece.getType()][capturedPiece.getColourIndex()].remove(dest)

221. this.pieceCapturedPlyBefore = capturedPiece.getType()

222. }

223.

224. // Check if the rook or king has moved (we will remove castling rights) This will
also take care of removing castling rights when castling

225. if (piece.getType() === Pieces.king) {

226. // Remove all castling rights

227. const shift = piece.isColour(Pieces.white) ? 0 : 2

228. this.castlingRights |= @b@011 << shift

229. }

230. else if (piece.getType() === Pieces.rook) {

231. const shift = piece.isColour(Pieces.white) ? 0 : 2

232.

233. if (source - colourOffset === 7) {

234. // Remove KS castling rights

235. this.castlingRights |= @b0001 << shift

236. }

237. if (source - colourOffset === 0) {

238. // Remove QS castling rights

239. this.castlingRights |= @b0010 << shift

240. }

241. }

242.

243. // Check if we're promoting

244, let destinationPiece = piece

245,

246. if (move.isPromotion()) {

247. destinationPiece = Piece.FromBinary(piece.getColour() |
move.getPromotionPiece())

248.

249.

250. // Add the piece in the square-oriented data structure. This will automatically

take care of non-enpassant captures

85

Finley Cooper 7588 50639

251. this.square[dest] = destinationPiece

252. // Add the piece into the piece-oriented data structure

253.
this.collections[destinationPiece.getType()][destinationPiece.getColourIndex()].add(dest)
254,

255. // Double pawn push means en passant is possible for the next turn on that file
256. if (flag === 0bo00O1) {

257. this.epFile = (dest % 8) + 1

258. }

259. else {

260. this.epFile = 0

261. }

262.

263. this.updateAllPieceCollection()

264.

265. this.sideToMoveIndex = 1 - this.sideToMoveIndex

266. this.sideToMove = this.sideToMoveIndex ? Pieces.black : Pieces.white

267. }

268.

269. unplayMove(move: Move) {

270. // Remove the most recent gamestate

271. const newGameState = this.pastGameStateStack.pop()

272. this.pastBoards.pop()

273.

274. if (newGameState === undefined) {

275. throw "No move to unplay!"

276. }

277.

278. this.sideToMoveIndex = (newGameState & ©bl)

279. this.sideToMove = this.sideToMoveIndex ? Pieces.black : Pieces.white

280.

281. const opponentMoveIndex = 1 - this.sideToMoveIndex

282. const opponentColour = this.sideToMoveIndex ? Pieces.white : Pieces.black
283.

284. const flag = move.getFlag()

285. const dest = move.getDestinationSquare()

286. const source = move.getSourceSquare()

287.

288.

289. const pieceCapturedLastPly = this.pieceCapturedPlyBefore === Pieces.empty ?
Pieces.empty : this.pieceCapturedPlyBefore | opponentColour

290.

291. let piece = this.square[dest]

292.

293. const colourOffset = piece.isColour(Pieces.white) ? @ : 56

294.

295. // Removed moved piece from data strucutures and replace it with an empty square or

the captured
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.

piece
this.square[dest] = Piece.FromBinary(pieceCapturedLastPly)
this.collections[piece.getType()][this.sideToMoveIndex].remove(dest)

// Handle en passant
if (move.isEnPassant()) {
const enPassantOffset = piece.isColour(Pieces.white) ? -8 : 8

this.square[dest + enPassantOffset] = new Piece.Pawn(opponentColour)
this.collections[Pieces.pawn][opponentMoveIndex].add(dest + enPassantOffset)

else if (move.isPromotion()) {
piece = new Piece.Pawn(this.sideToMove)

¥

// KS castling

else if (flag === 0b0010) {
this.collections[Pieces.rook][this.sideToMoveIndex].remove(5 + colourOffset)
this.collections[Pieces.rook][this.sideToMoveIndex].add(7 + colourOffset)

this.square[5 + colourOffset]
this.square[7 + colourOffset]

new Piece.Empty()
new Piece.Rook(this.sideToMove)

}
// QS castling

86

Finley Cooper 7588 50639

318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333,
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.

}

else if (flag === 0bo0O11) {
this.collections[Pieces.rook][this.sideToMoveIndex].remove(3 + colourOffset)
this.collections[Pieces.rook][this.sideToMoveIndex].add(@ + colourOffset)

this.square[3 + colourOffset]
this.square[0@ + colourOffset]

new Piece.Empty()
new Piece.Rook(this.sideToMove)

// Will also take care of promotion captures

if (move.isCapture() && !move.isEnPassant()) {
this.collections[pieceCapturedLastPly & ©bl111][opponentMoveIndex].add(dest)

by

// Source square replace with the moved piece
this.square[source] = piece
this.collections[piece.getType()][this.sideToMoveIndex].add(source)

this.castlingRights = (newGameState & ©b111100000) >> 5
this.pieceCapturedPlyBefore = (newGameState & 0b111000000000) >> 9
this.epFile = (newGameState & 0b11110) >> 1
this.updateAllPieceCollection()

isSquareAttacked(square: number, attackerColour: number): boolean {

const attackerColourIndex = attackerColour === Pieces.white ? 0 : 1
const defenderColour = attackerColourIndex == © ? Pieces.black : Pieces.white
const blockers = this.collections[Pieces.all][attackerColourIndex].getBitboard() |

this.collections[Pieces.all][1 - attackerColourIndex].getBitboard()

344.
345.
346.
347.
348.
349.
350.

// Looping over all pieces binary values

for (let i = 1; i < Pieces.king + 1; i++) {
const piece = Piece.FromBinary(i | defenderColour)

if (piece.getAttacks(square, blockers) &

this.collections[i][attackerColourIndex].getBitboard()) {

351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.

}

return true
¥
¥

return false

generatelLegalMoves(): Array<Move> {

let movelList: Array<Move> = []

for (let i = 0; i < 64; i++) {
if (this.square[i].isColour(this.sideToMove)) {
moveList.push(...this.square[i].getLegalMoves(i, this))

}
}

// All pieces that lie in the attack bitboard of the king in all offsets
const piece = new Piece.Queen(Pieces.white)

const kingBitboard = this.collections[Pieces.king][this.sideToMoveIndex]

let kingPosition = @n

while (kingBitboard.getBitboard() >> kingPosition !== 1n) {
kingPosition++

}

const attacks = piece.getAttacks(Number(kingPosition),

this.collections[Pieces.all][1 - this.sideToMoveIndex].getBitboard())

378.

const isPinning = attacks & this.collections[Pieces.bishop][1 -

this.sideToMoveIndex].getBitboard()

379.
380.
381.
382.
383.

| this.collections[Pieces.rook][1 - this.sideToMoveIndex].getBitboard()
| this.collections[Pieces.queen][1 - this.sideToMoveIndex].getBitboard()

// We only need to check moves of pinned pieces and king moves and en passant

87

Finley Cooper 7588 50639

384. const sideToPlay = this.sideToMove

385. const opponentColour = sideToPlay === Pieces.white ? Pieces.black : Pieces.white
386.

387. const isCheck = this.isSquareAttacked(Number(kingPosition), opponentColour)
388.

389. movelList = movelList.filter(move => {

390. const sourceSquare = move.getSourceSquare()

391.

392. if (this.square[sourceSquare].getType() === Pieces.king) {

393, this.collections[Pieces.all][this.sideToMoveIndex].remove(sourceSquare)
394. const isLegal = !this.isSquareAttacked(move.getDestinationSquare(),
opponentColour)

395. this.collections[Pieces.all][this.sideToMoveIndex].add(sourceSquare)
396. return islLegal

397. }

398.

399. const isPsuedoPinned = isPinning && ((attacks >> BigInt(sourceSquare)) & 1n)
400. if (isCheck || isPsuedoPinned || move.isEnPassant()) {

401. this.playMove(move)

402. const isLegal = !this.isSquareAttacked(Number(kingPosition),
opponentColour)

403. this.unplayMove(move)

404.

405. return islLegal

406. }

407. else {

408. return true

409. }

410. H

411.

412. return movelList

413, }

414.

415. isCheck(sideToPlay: number = this.sideToMove) {

416. const sideToPlayIndex = sideToPlay === Pieces.white ? 0 : 1

417. const opponentColour = sideToPlay === Pieces.white ? Pieces.black : Pieces.white
418. const kingBitboard = this.collections[Pieces.king][sideToPlayIndex]

419.

420. let kingPosition = @n

421. while (kingBitboard.getBitboard() >> kingPosition !== 1n) {

422, kingPosition++

423, }

424,

425. return this.isSquareAttacked(Number(kingPosition), opponentColour)

426. }

427.

428. isCheckmate() {

429. return this.generatelLegalMoves().length === @ && this.isCheck()

430. }

431.

432. isStalemate() {

433, return this.generatelLegalMoves().length === @ && !this.isCheck()

434, }

435,

436. getBoardData() {

437. return this.getGameState() >> 1

438. }

439,

440. generateBinaryUCILegalMoves() {

441. const movelList: Array<Move> = this.generatelegalMoves()

442, return [...new Set(movelList.map(move => move.toBinaryUCI()))]

443, }

444,

445. toBinary() {

446. let binaryBoard = new Uint8Array(64)

447,

448, for (let i =0; i < 64; i++) {

449, binaryBoard[i] = this.square[i].datum

450. }

451.

88

Finley Cooper 7588 50639
452. return binaryBoard
453, }
454, }
455.
456. export default Board
457.
frontend/src/engine/Move.ts
1. export const Pieces = {
2 empty: 0,
3 pawn: 1,
4. rook: 2,
5. knight: 3,
6 bishop: 4,
7 queen: 5,
8 king: 6,
9. black: 8,
10. white: 16
11. }
12.
13.
14. class Move {
15. readonly datum: number
16.
17. private static destinationSquareMask: number = OxFC00
18. private static sourceSquareMask: number = 0x@3F0
19. private static flagMask: number = 0x000F
20.
21. static fromCharacteristics(
22. dest: number,
23. source: number,
24. capture: boolean = false,
25. doublePawn: boolean = false,
26. ep: boolean = false,
27. castle: number = 0, // 1 is ks, 2 is gs
28. promotion: number = © // 1 is knight, 2 is bishop, 3 is rook, and 4 is queen
29.) {
30. const promotationBit = promotion ?» 1 : ©
31. const captureBit = (ep || capture) ? 1 : @
32. const speciallBit = (castle || promotion > 2) ? 1 : ©
33. const special@Bit = (doublePawn || castle == 2 || ep || promotion >> 1 == 1) ? 1 :
0
34.
35. const flag = promotationBit << 3 | captureBit << 2 | speciallBit << 1 special@Bit
36.
37. let datum = (dest << 10) | (source << 4) | flag
38.
39. return new this(datum)
40. }
41.
42. static binarySquareToCoordinate(square: number) {
43, const rank = Math.floor(square / 8) + 1
44, const file = String.fromCharCode(97 + (square % 8))
45,
46. return " ${file}${rank}"
47. }
48.
49, constructor(datum: number) {
50. this.datum = datum
51. }
52.
53. getDestinationSquare() {
54. return (this.datum & Move.destinationSquareMask) >> 10
55. }
56.
57. getSourceSquare() {
58. return (this.datum & Move.sourceSquareMask) >> 4

89

Finley Cooper 7588 50639

59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.

¥

getFlag() {
return this.datum & Move.flagMask
}

toBinaryUCI() {
return this.datum >> 4
}

toLetterUCI() {
const destinationSquare = this.datum >> 10
const sourceSquare = (this.datum & Move.sourceSquareMask) >> 4

nn

let promotationLetter =

if (this.isPromotion()) {
switch (this.datum & @bll) {

case 0boo:
promotationLetter =
break

case 0bol:
promotationLetter
break

case 0blo:
promotationLetter = "r"
break

case 0bll:
promotationLetter =
break

default:
break

n.n

|
S

"

n_n

|
Q

¥

return

“${Move.binarySquareToCoordinate(sourceSquare)}${Move.binarySquareToCoordinate(destinationSquare
)}${promotationLetter}

95.

96.

97.

98.

99.
100.
lo1.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.

isPromotion() {
return !!(this.datum & 0b1000)
¥

isCapture() {
return !!(this.datum & 0bo100)
¥

isEnPassant() {
return (this.datum & Move.flagMask) === 0b0101
¥

getPromotionPiece() {
if (!this.isPromotion()) {
return Pieces.empty
}

switch (this.datum & @bl11l) {

case 0boo:

return Pieces.knight
case 0bo1l:

return Pieces.bishop
case 0blo:

return Pieces.rook
case 0bll:

return Pieces.queen
default:

return Pieces.empty

90

Finley Cooper 7588 50639

127. }

128.

129. export default Move
130.

frontend/src/engine/Evaluation.ts

1. import Board from "./Board";

2. import { Pieces } from "./constants";

3. import { PieceSquareTable, Customisation } from "./Engine";
4.

5. export const pieceValue: { [key: number]: number } = {
6. 0: 0,

7. 1: 100,

8. 2: 500,

9. 3: 300,
10. 4: 300,
11. 5: 900,
12. 6: 0,
13. }
14.
15.

16. export default (board: Board, customisation: Customisation, pieceSquareTables:
PieceSquareTable) => {

17. // Positive is good for white, negative is good for black

18.

19. // Material Counting

20. let whiteMaterial = ©

21. let whitePieceSquareBonus = 0

22. let blackMaterial = ©

23. let blackPieceSquareBonus = 0

24,

25. // To see if we should start looking for checkmates, we see if the opponent has little
pieces left, by calculating the Hamming weight of the all pieces bitboard

26. let bitboard = board.getCollections()[Pieces.all][1 -
board.getSideToMoveIndex()].getBitboard()

27.

28. let hammingWeight = 0

29.

30. while (bitboard) {

31. bitboard &= (bitboard - 1n) // Removes the lowest 1s bit

32. hammingWeight += 1

33. }

34.

35. const isOpponentStruggling = hammingWeight < 8n

36.

37. for (let i = 0; i < 64; i++) {

38. const pieceType = board.getSquares()[i].getType()

39. let pieceSquareTableIndex = pieceType === Pieces.king && isOpponentStruggling ?
pieceType + 1 : pieceType

40.

41. if (board.getSquares()[i].isColour(Pieces.white)) {

42. whiteMaterial += pieceValue[pieceType]

43, whitePieceSquareBonus += pieceSquareTables[0][pieceSquareTableIndex][1i] *

(isOpponentStruggling ? 0.2 : 1) // Material is more important in the endgame
44,

45, else if ((board.getSquares()[i].isColour(Pieces.black))) {

46. blackMaterial += pieceValue[pieceType]

47. blackPieceSquareBonus += pieceSquareTables[1][pieceSquareTableIndex][i] *
(isOpponentStruggling » 0.2 : 1)

48.

49, }

50.

51. // Checkmating - For mates with rooks and queens the king must go towards the sides of
the board and the king must be brought closer

52. const opponentKingBitboard = board.getCollections()[Pieces.king][1 -
board.getSideToMoveIndex()]

53. const ourKingBitboard = board.getCollections()[Pieces.king][board.getSideToMoveIndex()]

91

Finley Cooper 7588 50639

54.

55. let checkmateBonus = @

56.

57. if (isOpponentStruggling) {

58. let opponentKingPositionBig = @n

59. while (opponentKingBitboard.getBitboard() >> opponentKingPositionBig !== 1n) {
60. opponentKingPositionBig++

61. }

62.

63. let ourKingPositionBig = @n

64. while (ourKingBitboard.getBitboard() >> ourKingPositionBig !== 1n) {

65. ourKingPositionBig++

66. }

67.

68. const opponentKingPosition = Number(opponentKingPositionBig)

69. const ourKingPosition = Number(opponentKingPosition)

70.

71. // Taxicab distance between kings

72. const kingDistance = Math.abs((opponentKingPosition % 8) - (ourKingPosition % 8)) +

Math.abs(Math.floor(opponentKingPosition / 8) - Math.floor(ourKingPosition / 8))
73.

74. checkmateBonus += 10 * (16 - kingDistance)

75.

76. // Taxicab distance between opponent king and corner of the board
77. const corneringDistance = ((opponentKingPosition % 8) % 7) +
(Math.floor(opponentKingPosition / 8) % 7)

78.

79. checkmateBonus += 25 * (16 - corneringDistance)

80. }

81.

82. // If happy to trade, then we prefer boards with fewer pieces,

83. if (board.getSideToMove() === Pieces.white) {

84. return whiteMaterial - blackMaterial + whitePieceSquareBonus - blackPieceSquareBonus

+ checkmateBonus + (-(customisation.tradeHappy - 50) * blackMaterial) * ©.0005

85. }

86. else {

87. return blackMaterial - whiteMaterial + blackPieceSquareBonus - whitePieceSquareBonus
+ checkmateBonus + (-(customisation.tradeHappy - 50) * whiteMaterial) * ©.0005

88. }

89.

9. }

91.

frontend/src/engine/Pieces/index.ts

1. import Pawn from "./Pawn";

2. import Queen from "./Queen";

3. import Rook from "./Rook";

4. import Empty from "./Empty";

5. import { Pieces } from "../constants";
6. import BasePiece from "./BasePiece";
7.

8. function getPieceFromBinary(datum: number): BasePiece {
9. const colour = datum & 0b11000
10.

11. switch (datum & 0b00111) {

12. case Pieces.pawn:

13. return new Pawn(colour)
14. case Pieces.rook:

15. return new Rook(colour)
16. case Pieces.knight:

17. return new Knight(colour)
18. case Pieces.bishop:

19. return new Bishop(colour)
20. case Pieces.queen:

21. return new Queen(colour)
22. case Pieces.king:

23. return new King(colour)

92

Finley Cooper 7588 50639

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

default:
return new Empty()

export default {

Bishop,

King,

Knight,

Pawn,

Queen,

Rook,

Empty,

FromBinary: getPieceFromBinary

1

frontend/src/engine/Pieces/Rook.ts

LOoOoONOOTUVTES WN R

18.

23.

import BasePiece from "./BasePiece";

import { Pieces } from "../constants”;

import Board from "../Board";

import { generateSliderMoves, getSlidingPieceAttacks } from "./utils";
import Move from "../Move";

class Rook extends BasePiece {
constructor(colour: number) {
super(colour | Pieces.rook)

¥

public override getAttacks(square: number, blockers: bigint) {
return getSlidingPieceAttacks(square, [-1, 8, 1, -8], blockers)

}

public override getlLegalMoves(square: number, board: Board): Array<Move> {
return generateSliderMoves(square, this.getColour(), [-1, 8, 1, -8], board)

}
}

export default Rook

frontend/src/engine/Pieces/Queen.ts

VWCOoONOOTUVTDE WN R

import BasePiece from "./BasePiece";

import { Pieces } from "../constants”;

import Board from "../Board";

import { generateSliderMoves, getSlidingPieceAttacks } from "./utils";
import Move from "../Move";

class Queen extends BasePiece {
constructor(colour: number) {
super(colour | Pieces.queen)

}

public override getAttacks(square: number, blockers: bigint) {
return getSlidingPieceAttacks(square, [-1, 7, 8, 9, 1, -7, -8, -9], blockers)

¥

public override getlLegalMoves(square: number, board: Board): Array<Move> {

93

Finley Cooper 7588 50639
19. return generateSliderMoves(square, this.getColour(), [-1, 7, 8, 9, 1, -7, -8, -9],
board)
20. }
21. }
22.
23. export default Queen
24,
frontend/src/engine/Pieces/Pawn.ts
1. import BasePiece from "./BasePiece";
2. import { Pieces } from "../constants";
3. import Board from "../Board";
4. import Move from "../Move";
5. import SquareCollection from "../SquareCollection";
6.
7.
8. class Pawn extends BasePiece {
9. constructor(colour: number) {
10. super(colour | Pieces.pawn)
11. }
12.
13. public override getAttacks(square: number, blockers: bigint) {
14. const pieceColour = this.getColour()
15.
16. let attackBitboard = @n
17.
18. const movementDirection = pieceColour == Pieces.white ? 1 : -1
19. const file = square % 8
20.
21. const LHCaptureSquare: number = square + movementDirection * 7
22. const RHCaptureSquare: number = square + movementDirection * 9
23.
24. const isOnLeftFile: boolean = file === (pieceColour == Pieces.white ? 0 :
25. const isOnRightFile: boolean = file === (pieceColour == Pieces.white ? 7 :
26.
27. if (!isOnLeftFile) {
28. attackBitboard |= 1n << BigInt(LHCaptureSquare)
29. }
30.
31. if (!isOnRightFile) {
32. attackBitboard |= 1n << BigInt(RHCaptureSquare)
33. }
34.
35. return attackBitboard
36.
37. }
38.
39. public override getlLegalMoves(square: number, board: Board): Array<Move> {
40. const pieceColour = this.getColour()
41.
42. let moves: Array<Move> = []
43.
44, // If we're white, we're going up the board, if we're black we need to go down
45. const movementDirection = pieceColour == Pieces.white ? 1 : -1
46. const pieceColourIndex = pieceColour == Pieces.white ? 0 : 1
47.
48. const rank = Math.floor(square / 8)
49. const file = square % 8
50.
51. // One rank ahead, given the target square isn't blocked
52. const squareAhead = square + movementDirection * 8
53.
54. const promotationRank = pieceColour == Pieces.white ? 6 : 1
55.
56. if (board.getSquares()[squareAhead].getType() == Pieces.empty) {
57. if (rank === promotationRank) {
58. for (let i = 1; i < 5; i++) {

94

Finley Cooper 7588 50639

59. moves.push(Move.fromCharacteristics(squareAhead, square, false, false,
false, 0, 1))

60. }

61. }

62. else {

63. moves.push(Move.fromCharacteristics(squareAhead, square))

64. // Two ranks ahead, given the target square isn't blocked

65. const isFirstMove = ((pieceColour == Pieces.white) && (rank === 1)) ||
((pieceColour == Pieces.black) && (rank === 6))

66.

67. if (isFirstMove) {

68. const squareTwoAhead = squareAhead + movementDirection * 8

69.

70. if (board.getSquares()[squareTwoAhead].getType() == Pieces.empty) {
71. moves.push(Move.fromCharacteristics(squareTwoAhead, square, false,
true))

72. }

73. }

74. }

75.

76. }

77.

78. // En passant

79. if (board.getEpFile() !== 0) {

80. const LHCaptureSquare: number = square + movementDirection * 7

81. const RHCaptureSquare: number = square + movementDirection * 9

82. const epRank = pieceColour === Pieces.white ? 4 : 3

83. const epFile = board.getEpFile() - 1

84.

85. if (epRank === rank && (epFile - 1 === file || epFile + 1 === file)) {

86. const enPassantCaptureSquare = movementDirection * epFile >
movementDirection * file ? RHCaptureSquare : LHCaptureSquare

87. moves.push(Move.fromCharacteristics(enPassantCaptureSquare, square, true,
false, true))

88. }

89. }

909.

91.

92. // Captures and promotions

93. const attacks = new SquareCollection(this.getAttacks(square, 0n))

94.

95. // Bitwise AND on the attacks and the opponent's pieces to see which attacks are
actually captures

96. const captures = attacks.and(board.getCollections()[Pieces.all][1 -
pieceColourIndex])

97.

98. for (const captureSquare of captures) {

99. if (rank === promotationRank) {
100. for (let i = 1; i < 5; i++) {
101. moves.push(Move.fromCharacteristics(captureSquare, square, true, false,
false, 0, 1))
102. }
103. }
104. else {
105. moves.push(Move.fromCharacteristics(captureSquare, square, true))
106. }
107. }
108.
109. return moves
110. }
111. }
112.
113. export default Pawn
114.

frontend/src/engine/Pieces/Knight.ts

| 1. import BasePiece from "./BasePiece";

95

Finley Cooper 7588
2. import { Pieces } from "../constants";
3. import Board from "../Board";
4. import Move from "../Move";
5. import { precomputedKnightMoves } from "./utils/precalculations/results”;
6. import SquareCollection from "../SquareCollection"”;
7
8.
9. class Knight extends BasePiece {
10. constructor(colour: number) {
11. super(colour | Pieces.knight)
12. }
13.
14. public override getAttacks(square: number, blockers: bigint) {
15. const squaresInRange = precomputedknightMoves.get(square)
16.
17. if (!squaresInRange) {
18. throw 'Error using precomputed knight data’
19. }
20.
21. let attackBitboard = @n
22.
23.
24. for (const destSquare of squaresInRange) {
25. attackBitboard |= 1n << BigInt(destSquare)
26. }
27.
28. return attackBitboard
29. }
30.
31. public override getLegalMoves(square: number, board: Board): Array<Move> {
32. let moves: Array<Move> = []
33.
34. const pieceColour = this.getColour()
35.
36. const attacks = new SquareCollection(this.getAttacks(square, @n))
37.
38. const pieceColourIndex = pieceColour == Pieces.white ? 0 : 1
39.
40. const opponentPieces = board.getCollections()[Pieces.all][1 - pieceColourIndex]
41. const friendlyPieces = board.getCollections()[Pieces.all][pieceColourIndex]
42.
43. // Captures
a4. const captures = attacks.and(opponentPieces)
45,
46. for (const captureSquare of captures) {
47. moves.push(Move.fromCharacteristics(captureSquare, square, true))
48. }
49,
50. // Quiet Moves
51. const quietMoves = attacks.and(opponentPieces.or(friendlyPieces).not())
52.
53. for (const quietMove of quietMoves) {
54. moves.push(Move.fromCharacteristics(quietMove, square))
55, }
56.
57. return moves
58. }
59. }
60.
61. export default Knight
62.

50639

frontend/src/engine/Pieces/King.ts

import BasePiece from "./BasePiece";

import { Pieces } from "../constants";

import Board from "../Board";

import { generateSliderMoves, getSlidingPieceAttacks } from "./utils";

AwWN PR

96

Finley Cooper 7588 50639

5. import Move from "../Move";
6.
7.
8. class King extends BasePiece {
9. constructor(colour: number) {
10. super(colour | Pieces.king)
11. }
12.
13. public override getAttacks(square: number, blockers: bigint) {
14. // King cannot be blocked (as it has distance 1), so the empty bitboard of @ will
work
15. return getSlidingPieceAttacks(square, [-1, 7, 8, 9, 1, -7, -8, -9], @on, 1)
16. }
17.
18. public override getLegalMoves(square: number, board: Board): Array<Move> {
19. const pieceColour = this.datum & 0b11000
20.
21. // Normal king moves can be thought of a sliding piece with distance 1
22. let moves: Array<Move> = generateSliderMoves(square, pieceColour, [-1, 7, 8, 9, 1, -
7, -8, -9], board, 1)
23.
24. // Castling - MSB is Queen-side castling, LSB is King-side castling. 1 is
unavaliable, @ is avaliable.
25. let castlingRights: number
26.
27. const opponentColour = pieceColour == Pieces.white ? Pieces.black : Pieces.white
28.
29. if (pieceColour === Pieces.white) {
30. castlingRights = board.getCastlingRights() & @boe1l1l
31. }
32. else {
33. castlingRights = (board.getCastlingRights() & ©@bl1100) >> 2
34, }
35.
36. // King-side Castling
37. if ((castlingRights & 0bOl) === 0) {
38. const indexesBetween = pieceColour === Pieces.white ? [5, 6] : [61, 62]
39. const isLegal = indexesBetween.every(i => board.getSquares()[i].getType() ===
Pieces.empty && !board.isSquareAttacked(i, opponentColour))
40.
41. if (isLegal && !board.isSquareAttacked(square, opponentColour)) {
42. moves.push(Move.fromCharacteristics(square + 2, square, false, false, false,
1))
43, }
44, }
45,
46. // Queen-side Castling
47. if ((castlingRights & 0b10) === 0) {
48. const indexesBetween = pieceColour === Pieces.white ? [2, 3] : [58, 59]
49. const squareRookMovesThrough = pieceColour === Pieces.white ? 1 : 57
50.
51. const islLegal = indexesBetween.every(i => {
52. return board.getSquares()[i].getType() === Pieces.empty &&
Iboard.isSquareAttacked(i, opponentColour)
53. 1)
54.
55. if (isLegal && !board.isSquareAttacked(square, opponentColour) &&
board.getSquares()[squareRookMovesThrough].getType() === Pieces.empty) {
56. moves.push(Move.fromCharacteristics(square - 2, square, false, false, false,
2))
57. }
58. }
59.
60. return moves
61. }
62. }
63.
64. export default King
65.

97

Finley Cooper 7588

frontend/src/engine/Pieces/Bishop.ts

50639

1. import BasePiece from "./BasePiece";

2. import { Pieces } from "../constants";

3. import Board from "../Board";

4. import { generateSliderMoves, getSlidingPieceAttacks } from "./utils";
5. import Move from "../Move";

6.

7.

8. class Bishop extends BasePiece {

9. constructor(colour: number) {

10. super(colour | Pieces.bishop)

11. }

12.

13. public override getAttacks(square: number, blockers: bigint) {

14. return getSlidingPieceAttacks(square, [7, 9, -7, -9], blockers)
15. }

16.

17. public override getLegalMoves(square: number, board: Board): Array<Move> {
18. return generateSliderMoves(square, this.getColour(), [7, 9, -7, -9], board)
19. }

20. }

21.

22. export default Bishop

23.

frontend/src/engine/Pieces/Empty.ts

1. import BasePiece from "./BasePiece";
2

3. class Empty extends BasePiece {

4 constructor() {

5. super(9)

6 ¥

7.}

8.

9. export default Empty

10.

frontend/src/engine/Pieces/BasePiece.ts

import Board from '../Board';
import Move from '../Move';

1.

2.

3

4. // Abstact base class representing a Piece
5. class BasePiece {

6 readonly datum: number

7
8
9

constructor(datum: number) {

. if (this.constructor === BasePiece) {
10. throw new Error("Cannot construct BasePiece abstract class")
11. }

12.

13. this.datum = datum

14. }

15.

16. public getColour() {

17. return this.datum & @bl1000
18. }

19.

20. public getType() {

21. return this.datum & ©b00111
22. }

23.

24. public isColour(colour: number) {

98

Finley Cooper 7588 50639

25.
26.

return (this.datum & ©b11000) === colour
b

27.

28.
29.
30.
31.

public getColourIndex() {
// © is white 1 is black
return +!!(this.datum & 8)
¥

32.

33.
34.
35.

public getOpponentColourIndex() {
return +!(this.datum & 8)

}

36.

37.
38.
39.

public getLegalMoves(square: number, board: Board): Array<Move> {
return []

}

40.

41.
42.
43.

public getAttacks(square: number, blockers: bigint): bigint {
return @n

}

44.

45.
46.
a7.
48.
49.

public isDifferentColour(piece: BasePiece) {
// Shift datum so only the white bit is left
// If the pieces are different the XOR operation will be true
return (piece.datum >> 4) ~ (this.datum >> 4)

50.

51.

}

52.

53.

export default BasePiece

54.

frontend/src/engine/Pieces/utils/index.ts

Nouhs wNEkR

bi

00 B

import Board from "../../Board"

import Move from "../../Move"

import SquareCollection from "../../SquareCollection”
import { Pieces } from "../../constants"

import { precomputedSlidersSeralisedDistances } from

./precalculations/results”

. export function getSlidingPieceAttacks(square: number, offsets: Array<number>, blockers:
gint, distance: number = 8) {
const allOffsets [-1, 7, 8, 9, 1, -7, -8, -9]

let distancesFromEdge = precomputedSlidersSeralisedDistances.get(square)

if (!distancesFromEdge) {
throw 'Error using precomputed slider data’

}

let attackBitboard = @n

for (let i = 0; i < offsets.length; i++) {
for (let j = 0; j < Math.min(distancesFromEdge[i], distance); j++) {
attackBitboard |= destSquareBitboardValue
// If we've run into a piece, we stop counting attacks on this offset

if (blockers & destSquareBitboardValue) {
break

}
}

return attackBitboard

const destSquareBitboardValue = 1n << BigInt((offsets[i] * (j + 1)) + square)

distancesFromEdge = distancesFromEdge.filter((_, i) => offsets.includes(allOffsets[i]))

99

Finley Cooper 7588

35.

36. export function generateSliderMoves(square: number, pieceColour: number, offsets:
Array<number>, board: Board, distance: number = 8) {

37.
38.
39.
40.
41.
42.

const pieceColourIndex = pieceColour == Pieces.white ? 6 : 1

const opponentPieces = board.getCollections()[Pieces.all][1 - pieceColourIndex]
const friendlyPieces = board.getCollections()[Pieces.all][pieceColourIndex]

const attacks = getSlidingPieceAttacks(square, offsets,

opponentPieces.or(friendlyPieces).getBitboard(), distance)

43.
44.
45.
46.
a7.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

let moves: Array<Move> = []

// Captures
const captures = attacks & opponentPieces.getBitboard()

for (const captureSquare of new SquareCollection(captures)) {
moves.push(Move.fromCharacteristics(captureSquare, square, true))

}

// Quiet Moves

50639

const quietMoves = attacks & (opponentPieces.or(friendlyPieces).not()).getBitboard()

for (const quietMove of new SquareCollection(quietMoves)) {
moves.push(Move.fromCharacteristics(quietMove, square))

¥

return moves

frontend/src/engine/Pieces/utils/precalculations/knightMoves.js

22.

. // Knight offsets

const offsets = [

]

offset: -10, disallowedFiles: [0, 1], disallowedRanks: [@0] },
offset: -17, disallowedFiles: [©], disallowedRanks: [©, 1] },
offset: -15, disallowedFiles: [7], disallowedRanks: [0, 1] },
offset: -6, disallowedFiles: [6, 7], disallowedRanks: [0] },
offset: 6, disallowedFiles: [0, 1], disallowedRanks: [7] },
offset: 15, disallowedFiles: [@], disallowedRanks: [6, 7] },
offset: 17, disallowedFiles: [7], disallowedRanks: [6, 7] },
offset: 10, disallowedFiles: [6, 7], disallowedRanks: [7] },

e N T N A e N

. const moves = new Map()

. for (let i = 0; i < 64; i++) {

const file = 1 % 8
const rank = Math.floor(i / 8)

const movesFromSquare = []

for (let j = 0; j < offsets.length; j++) {
if (offsets[j].disallowedFiles.includes(file) ||

offsets[j].disallowedRanks.includes(rank)) {

23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.

continue

¥
const targetSquare = i + offsets[j].offset
movesFromSquare.push(targetSquare)

¥

moves.set(i, movesFromSquare)

100

Finley Cooper 7588 50639

35. const serialisedMoves = JSON.stringify(Array.from(moves.entries()))
36.

37. console.log(serialisedMoves)

38.

frontend/src/engine/Pieces/utils/precalculations/slidingPiecesMoves.js

1. const distancesFromEdge = new Map()

2.

3. for (let 1 = 0; 1 < 64; i++) {

4. const file = 1 % 8

5 const rank = Math.floor(i / 8)

6

7 let distanceFromTop = 7 - rank

8. let distanceFromBottom = rank

9. let distanceFromLeft = file
10. let distanceFromRight = 7 - file
11.
12. // Corresponding to these offsets [-1, 7, 8, 9, 1, -7, -8, -9]
13. distancesFromEdge.set(i, [
14. distanceFromLeft,
15. Math.min(distanceFromLeft, distanceFromTop),
16. distanceFromTop,
17. Math.min(distanceFromTop, distanceFromRight),
18. distanceFromRight,
19. Math.min(distanceFromBottom, distanceFromRight),
20. distanceFromBottom,
21. Math.min(distanceFromBottom, distanceFromLeft)
22. 1D
23. }
24,

25. const serialisedDistances = JSON.stringify(Array.from(distancesFromEdge.entries()))
26.

27. console.log(serialisedDistances)

28.

frontend/src/engine/Pieces/utils/precalculations/results.ts

1. const knightSerialisedMoves =
"[[e,[17,10]],[1,[16,18,11]],[2,[8,17,19,12]],[3,[9,18,20,13]],[4,[10,19,21,14]],[5,[11,20,22,15
11,[6,012,21,2311,[7,[13,22]1,[8,[2,25,18]1,[9,[3,24,26,19]1,[10,[0,4,16,25,27,20]1,[11,[1,5,17,
26,28,21]1,[12,[2,6,18,27,29,22]],[13,[3,7,19,28,30,23]1],[14,[4,20,29,31]],[15,[5,21,30]],[16,[1
,10,33,2611,[17,[9,2,11,32,34,27]1,[18,[8,1,3,12,24,33,35,28]]1,[19,[9,2,4,13,25,34,36,29]],[20, [
1e,3,5,14,26,35,37,30]1,[21,[11,4,6,15,27,36,38,31]1],[22,[12,5,7,28,37,39]],[23,[13,6,29,38]1,[2
4,[9,18,41,34]1,[25,[8,10,19,40,42,35]],[26,[16,9,11,20,32,41,43,36]],[27,[17,10,12,21,33,42,44,
3711,[28,[18,11,13,22,34,43,45,38]1],[29,[19,12,14,23,35,44,46,39]1,[30,[20,13,15,36,45,47]]1,[31,
[21,14,37,46]],[32,[17,26,49,42]],[33,[16,18,27,48,50,43]],[34,[24,17,19,28,40,49,51,44]],[35,[2
5,18,20,29,41,50,52,45]],[36,[26,19,21,30,42,51,53,46]1],[37,[27,20,22,31,43,52,54,47]1,[38,[28,2
1,23,44,53,55]],[39,[29,22,45,54]],[40,[25,34,57,50]], [41,[24,26,35,56,58,51]],[42,[32,25,27,36,
48,57,59,52]11,[43,[33,26,28,37,49,58,60,53]],[44,[34,27,29,38,50,59,61,54]],[45,[35,28,30,39,51,
60,62,55]],[46,[36,29,31,52,61,63]],[47,[37,30,53,62]],[48,[33,42,58]],[49,[32,34,43,59]],[59,[4
0,33,35,44,56,60]],[51,[41,34,36,45,57,61]1,[52,[42,35,37,46,58,62]1,[53,[43,36,38,47,59,63]],[5
4,[44,37,39,60]1],[55,[45,38,61]1,[56,[41,50]1]1,[57,[40,42,51]1],[58,[48,41,43,52]1,[59, [49,42,44,5
311,[60,[50,43,45,54]],[61,[51,44,46,55]],[62,[52,45,47]]1,[63,[53,46]]]"

2. const slidersSeralisedDistances =
“[[e,[e,0,7,7,7,0,0,0]],[1,[1,1,7,6,6,0,0,0]]1,[2,[2,2,7,5,5,0,0,0]1,[3,[3,3,7,4,4,0,0,0]1,[4,[4,
4,7,3,3,0,0,0]1,[5,[5,5,7,2,2,0,0,0]1,[6,[6,6,7,1,1,0,0,0]1,[7,[7,7,7,0,0,0,0,01],[8,[0,0,6,6,7,
1,1,e]1,[9,[1,1,6,6,6,1,1,1]1,[10,[2,2,6,5,5,1,1,1]1,[11,[3,3,6,4,4,1,1,1]1,[12,[4,4,6,3,3,1,1,1

11,[13,[5,5,6,2,2,1,1,1]],[14,[6,6,6,1,1,1,1,1]], [15,[7,6,6,0,0,0,1,1]],[16,[0,0,5,5,7,2,2,8]], [
17,[1,1,5,5,6,2,2,1]],[18,[2,2,5,5,5,2,2,2]],[19,[3,3,5,4,4,2,2,2]],[20,[4,4,5,3,3,2,2,2]],[21, [
5,5,5,2,2,2,2,2]],[22,[6,5,5,1,1,1,2,2]],[23,[7,5,5,0,0,6,2,2]],[24,[0,0,4,4,7,3,3,0]],[25,[1,1,
4,4,6,3,3,1]11,[26,[2,2,4,4,5,3,3,2]1,[27,[3,3,4,4,4,3,3,3]]1,[28,[4,4,4,3,3,3,3,3]1,[29,[5,4,4,2,
2,2,3,3]1,[3e,[6,4,4,1,1,1,3,3]],[31,[7,4,4,0,0,0,3,3]],[32,[0,0,3,3,7,4,4,0]],[33,[1,1,3,3,6,4,
4)1]])[34)[2)2)3)3)5)4)4)2]])[35)[3)3)3)3)4)4)4)3]])[36) [4)3)3)3)3)3)4)4]])[37)[5)3)3)2)2)2)4)4]
1,[38,[6,3,3,1,1,1,4,4]1,[39,[7,3,3,0,0,0,4,4]],[4e,[0,0,2,2,7,5,5,0]],[41,[1,1,2,2,6,5,5,1]], [4
2,[2,2,2,2,5,5,5,2]],[43,[3,2,2,2,4,4,5,3]],[44,[4,2,2,2,3,3,5,4]], [45,[5,2,2,2,2,2,5,5]],[46,[6

Finley Cooper 7588 50639
»2,2,1,1,1,5,5]1,[47,[7,2,2,0,0,0,5,5]],[48,[0,0,1,1,7,6,6,0]],[49,[1,1,1,1,6,6,6,1]],[50,[2,1,1
,1,5,5,6,2]1],[51,[3,1,1,1,4,4,6,3]1],[52,[4,1,1,1,3,3,6,4]],[53,[5,1,1,1,2,2,6,5]],[54,[6,1,1,1,1
,1,6,6]],[55,[7,1,1,0,0,0,6,6]],[56,[0,0,0,0,7,7,7,0]],[57,[1,0,0,0,6,6,7,1]],[58,[2,0,0,0,5,5,7
»211,[59,[3,0,0,0,4,4,7,3]],[60,[4,0,0,0,3,3,7,4]],[61,[5,0,0,0,2,2,7,5]],[62,[6,0,0,0,1,1,7,6]]
)[63)[7.-0)0)0)0) J7J7]]]"

3.

4. export const precomputedKnightMoves: Map<number, Array<number>> = new

Map (JSON.parse(knightSerialisedMoves))

5. export const precomputedSlidersSeralisedDistances: Map<number, Array<number>> = new

Map (JSON.parse(slidersSeralisedDistances))
6.

frontend/src/components/BoardElement/constants.tsx

1. interface BoardCustomisation {
2. lightSquares: string

3. darkSquares: string

4. activeSquare: string

5. allowedMove: string

6. lastMoveDestination: string
7. lastMoveSource: string

8. }

9.
10. export const squareLength: number = 100 // Pixels
11.
12. export const initialColours: BoardCustomisation = {
13. lightSquares: "#f0d9b5",
14. darkSquares: "#b58863",
15. activeSquare: "#ffffff",
16. allowedMove: "#000",
17. lastMoveDestination: "#ffdd47",
18. lastMoveSource: "#ffeb94"
19. }
20.
21. export const Pieces = {
22. empty: 0,
23. pawn: 1,
24. rook: 2,
25. knight: 3,
26. bishop: 4,
27. queen: 5,
28. king: 6,
29. black: 8,
30. white: 16
31. }
32.

frontend/src/components/BoardElement/pieces.svg
[Intentionally Omitted]

frontend/src/components/BoardElement/index.css

1. /* Chess board */

2.

3. .board {

4. position: relative;

5.}

6.

7. .squares,

8. .square-masks {

9. display: grid;
10. grid-template-columns: repeat(8, 1fr);
11. grid-template-rows: repeat(8, 1fr);
12. }

102

Finley Cooper 7588
13.

14. .square-masks {

15. z-index: 2;

16. position: absolute;
17. opacity: 0.5;

18. top: ©;

19. left: 9;

20. }

21.

22.

23. .chess-piece {

24. position: absolute;
25. left: 0;

26. cursor: pointer;
27. }

50639

frontend/src/components/Piece.ts

1. import React from "react"

2. import { Pieces } from "./constants"

3. import pieceSVGs from "./pieces.svg"

4.

5.

6. interface PieceProps {

7. piece: number;

8. style?: React.CSSProperties;

9. onMouseDown?: (event: React.MouseEvent) => void;
10. onMouseMove?: (event: React.MouseEvent) => void;
11. onMouseUp?: () => void;

12. }

13.

14.

15. class Piece extends React.Component<PieceProps> {
16. constructor(props: PieceProps) {

17. super(props)

18. }

19.

20. render() {

21. const { piece, style, onMouseDown, onMouseMove, onMouseUp } = this.props
22.

23. const colour: string = piece & Pieces.white ? "white" : "black"
24,

25. let type: string = ""

26.

27. switch (piece & 7) {

28. case Pieces.pawn:

29. type = "pawn"

30. break

31. case Pieces.rook:

32. type = "rook"

33. break

34. case Pieces.knight:

35. type = "knight"

36. break

37. case Pieces.bishop:

38. type = "bishop"

39. break

40. case Pieces.queen:

41. type = "queen"

42. break

43. case Pieces.king:

44. type = "king"

45. break

46. }

47.

48. return (

49. <svg className="chess-piece" style={style} onMouseDown={onMouseDown}

onMouseUp={onMouseUp} onMouseMove={onMouseMove}>

103

