
Finley Cooper 7588 50639

2

Contents
1 Analysis 4

Background to the Project 4

Current System 4

Prospective Users 4

Interview 5

Diagrams of existing systems 7

User Requirements 8

Objectives 8

Technical Research 9

Problem Modelling 10

Hardware and Software Requirements 10

2 Design 11

High Level Overview 11

Database Design 14

Entity Relationship Diagram 14

Overview of SQL Queries Used 14

Normalisation 15

Cascade 15

Data Flow Diagrams 16

Level 0 16

Level 1 16

Level 2 (Focused on the Backend) 16

Data Structures 17

User Interface 19

Prototype Screen Designs 19

General Design and Accessibility 23

Algorithms 24

Elliptic Curve Signing Algorithm 24

Alpha-Beta Pruning 28

Board Hashing 29

Adding Positional Weaknesses 30

Move Generation Algorithm 31

Piece Counting Algorithm 32

Hardware and Security 33

3 Testing 34

Test Plan 34

Finley Cooper 7588 50639

3

Test 1 - User interface for the board 36

Test 2 - Attack Generation 38

Test 3 - Move Generation 40

Test 4 - Engine 43

Test 5 - Cryptographic functions 44

Test 6 - Login and Signup form 45

Test 7 - API and Authorisation 47

Test 8 - Custom Game and Review 48

Test 9 - Adventure Mode 49

Test 10 - End-to-End testing 50

Screenshots 53

Testing video links 57

Transcriptions 57

4 Evaluation 59

Changes Due to Feedback 59

Project Objective Evaluation 59

Possible Improvements 60

5 Code 62

File Hierarchy Diagram 62

File Descriptions 64

Cover Sheet 67

Appendix 69

Finley Cooper 7588 50639

4

1 Analysis

Background to the Project

With the recent boom in popularity of chess in the last couple of years, there has been an increase of
demand for tools to help people improve in the game. However, many of these tools are
computationally expensive, and therefore are locked behind paywalls and subscriptions such as

. My NEA will be a clear-purpose web application that provides an
adapts the computer playing against the user to help the user

improve, overcoming the issues of
browser.

Current System

There are many options available to people trying to improve at chess, outside of just playing against
people. Automated tools include:

Revision and memory tools to help the person learn checkmating patterns and opening lines.
Puzzles to improve tactic spotting.

Those two will be out of scope of this project, what I will looking at to focus on and improve are:

Playing against engines.
Analysis of past games.

Most chess websites provide systems to play against engines at different strength and some provide

engine. However, many of
-powerful engine, but rather

focus on a high level of customisation which is much more important for people learning chess below
the average skill level. To get this high level of customisation I will have to forfeit some of the speed
and therefore depth in the engine.

Secondly, instead of providing a game-by-game analysis of each game, I instead want to analyse the
entire history of games played by the user on my application. This should give more insight to the
playing style and positional errors made by the user in their chess games, as a game-by-game analysis
causes the user to focus on tactics they are missing instead of the big picture.

These changes make my project not a replacement for existing chess analysis programs, but
something than can be used alongside traditional analysis programs.

A major problem suffered by chess analysis programs are the price of analysing games. Chess engines
require a lot of processor time on the server, which is expensive, explaining the restrictions
implemented on the number of games that can be analysed on many websites. To get around this, and
provide more independence for the client, the engine will be run in the web browser.

Prospective Users

This project is designed for people who know at least the basics of chess, and hopefully have played
some chess online, so the website will feel familiar and not overwhelming, and the user should

Finley Cooper 7588 50639

5

understand basic terms of chess analysis. The engine will not be suitable for advanced chess players
a depth of analysis high enough to beat someone who has played chess for

a long time (due to the computational limits of browser-based analysis).

For people who have just learnt chess, a playstyle analysis program will not be as helpful, as newer
chess players tend to have more sporadic playstyles which have less use analysing.

The targeted audience for this website is younger people (around 12-17 years old) who have picked
up chess in the recent boom of chess popularity online in the last couple of years and are struggling
with positional issues in their chess games. I will use a group of
evaluate this project at range of skill levels.

The website will only be able to run on desktop computers, as mobile phones are less likely to have
the hardware and modern browser features to allow analysis in the browser.

All users will interact with the website as clients and will play games on the site against the engine, no
matter how advanced they are. The user will be able to adjust the engine manually.

As the project might be used by younger users, the design of the website must be simple and intuitive
to use and should be approachable by people who have never played chess online. The application
should also meet accessibilities requirements for a website, by using semantic HTML elements and
ARIA tags when that is not available.

The project should be designed in a way so that it can be run by a client who
experience with computer science. Possibly clients include schools, a group of friends, or a parent,
who could run their own instance of the web server, providing the system to students, other friends, or
children.

Interview

Interview with a friend who is very good at chess. The interviewee also has experience working with
younger children, as he tutors younger students weekly, so he made a perfect candidate to have a
technical discussion about what the system could provide my users.

Me: When younger children are using a learning tool for a game such as chess, what kind of features
will keep them engaged specifically for a game like chess?

Answer: Definitely the most important [feature] is a sense of competition. [The users] wanna show off
to their friends with a wide range of metrics. some sort of horde mode, or
game with some kinda objective.

Me: Any other ideas?

friendly, and most kids, you know, get confused from
messy apps.

Me: With the actual bot, what could I provide which existing

Answer: [The engine] could, like, be really, really aggressive, and just start a massive attack on your
pieces
much really customisation, they all kind of feel the same.

Finley Cooper 7588 50639

6

After the preliminary interview, I created this table of potential ideas to give to the interviewee in a
secondary interview.

Me: Rate these features on a scale of how often you would use them. (I present the interviewee with a
table with headings Never, Rarely, Sometimes, Frequently, Always, for him to tick)

Never Rarely Sometimes Frequently Always

Lifetime
Playstyle
Analysis

(Ticked)

Survival
Mode with

endless levels
(Ticked)

Adaptive
Engine*

(Ticked)

Adventure
story-based

mode
(Ticked)

Sharing your
lifetime

playstyle with
friends

(Ticked)

Manual
adaptation of

engine
playstyles

(Ticked)

Predetermined
engine

settings to
play against

(Ticked)

Archive and
view past
games

(Ticked)

A basic friend
messaging
system

(Ticked)

*
engine which changed how it was playing within the same game.

Finley Cooper 7588 50639

8

User Requirements

Required Features

Provide a platform that allows the user to play a game of chess against the computer.
Develop an engine strong enough to beat existing engines of 1000 ELO at least 95% of the
time.
Allow the user to change the playing style of the engine, such that the change is noticeable to
all users.
Allow the user to decrease the strength of the engine so that the user can achieve a 50%-win
rate against the engine.
Store the past games of the user in a database on the server.
Create an authentication system for logging in and signing up to the website.
Create a platform suitable for a younger audience (simple interface and minimise complexity
for the user)
Add a campaign to guide the user through different playstyles.

Features that should be added

Adjust the playing style of the engine so it plays human-like.
Provide the user with an analysis of which playstyles they played best against in a shareable
format.
User customisation to the site and storage of preferences to appeal to younger people.

Desirable Features

Add the ability to look back at past games and generate a shareable link to share to friends.
Email verification for logging in.
View games after they have been completed.

Features that will not be added

Higher level search algorithms such as Monte Carlo tree searching.
Any form of neural networks or other types of AI.
Move-by-move analysis of the user

Objectives
The timings for each group of objectives should be followed, but some slack is expected. Some
objectives overlap, as they may be completed concurrently with other objectives.

1. Create a signup and login system. (After Mocks End of School Year)

The user will have to input an email, a name and password.
(special character, uppercase, lowercase, at

least 8 characters) for the form to be submitted.
The user will have to re-enter their password to confirm it has been inputted correctly.

When the user logs in, the server will give the user a cookie which has been signed by
the server using a suitable dual key algorithm.
Checks should be done on the user data client-side and server-side to prevent
unnecessary requests and from the user from bypassing checks by sending their own
requests to the server directly.

Finley Cooper 7588 50639

9

2. Create a customisable chess engine. (Start of Summer holidays 10th September)
The chess engine must be played within the browser, locally.
The engine must use a low amount of memory and CPU time to prevent the site from
freezing.
The engine must play to a standard to beat players up the level of myself (~1200
ELO).
The engine must be able to play down to users who have only recently started playing
chess, and still give even games.
More customisation settings should be given, at least an aggression setting and a
setting for how well the engine positions its pieces.
There should also be a GUI which provides the user with an interface to adjust the
settings of the engine.

3. Create an adventure mode using the engine customisations. (1st September 1st October)
The user should be able to play an adventure mode with a short story interspliced
with chess games which act as battles/fights/opponents.
The adventure mode should be easy for most players, but losses should be expected
sometimes.
The

automatically when the browser is closed, or
the user switches computers.
Once the user finishes the adventure, they should have access to a statistics sheet.
The sheet should be downloadable to the user for sharing.
All games played on the adventure or otherwise should be stored on the server and
reviewed by the user at any time move-by-move.
The games should be shareable to non-logged in users, but only viewed if they have a
shareable link created by the person who played the game, or they are the person who
played the game.

4. Create a REST API between the database and the website. (15th September 5th October)
The API should be authenticated and authorised for each resource which needs to be kept
protected.
The API should allow the user to change their name or delete their account if requested.
The API should response to invalid requests with the correct HTTP 4xx error in most
cases and all common cases (
dealing with many routes).
The API should allow an admin user to access all routes on the server and all data in the
database (apart from password hashes and salts, these should be NEVER sent on external
HTTP requests).
The API should make SQL requests to a database for the appropriate resources.

Technical Research
Almost all my research was conducted on the website https://www.chessprogramming.org which
provides an extensive list of algorithms for creating a chess engine in many ways and contains the
basic ideas for data structures which I based my TypeScript implementation on some of the ideas
talked about on the wiki.

For setting up the Docker container, I used the documentation on the Docker website here
https://docs.docker.com/desktop/.

Similarly, I used the Flask documentation for the Flask app https://flask.palletsprojects.com/en/3.0.x/.

Finley Cooper 7588 50639

14

Database Design

Entity Relationship Diagram

Overview of SQL Queries Used

Question marks represent values which have been parameterised.

This query creates new links in the Link table. The LinkURL is a randomly generated Base64 string,
which is inserted alongside timestamps which control when the Link expires. By storing the link in

, so when the link
expires, it becomes useless. The SQL DATETIME function creates a UNIX timestamp that is one day
ahead of the current time, and the CURRENT_TIMESTAMP variable inserts the current timestamp.

INSERT INTO Links (LinkURL, CreatedAt, ExpiresAt, Gameid)
Values(?, CURRENT_TIMESTAMP, DATETIME('now', '+1 day'), ?)

This is the query used to get information for a redirect when a user navigates to a shareable link
(starting with /s/). The query uses an inner join between the Links table and the GameHistory table

, to get the user id of the person who shared the game for the redirect to
/review?gameid={game id here}&userid={user id here}

SELECT Links.*, GameHistory.Userid
FROM Links
INNER JOIN GameHistory
ON Links.Gameid = GameHistory.Gameid
WHERE Links.LinkURL = ?

Finley Cooper 7588 50639

15

We select information from the user table in the login process to check the password hash, in
the signup process to check for an existing account, and every single time the website is loaded. I also
use an INNER JOIN to the UserCampaign table to get the current level id, so when the user plays the
adventure mode, the API request will query the current level correctly. for
all API queries relating to them, so the client must have this information about the user when the
website is first loaded.

SELECT Users.*, UserCampaign.Levelid
FROM Users
INNER JOIN UserCampaign
ON Users.Userid = UserCampaign.Userid
WHERE Users.Email = ?

y beat the previous level.

UPDATE UserCampaign SET Levelid = ? WHERE Userid = ?

This
most recent to least. This is used in the API request for the History route.

SELECT * FROM GameHistory WHERE Userid = ? ORDER BY DatePlayed DESC

Normalisation
transitive dependencies in the database, and all non-key attributes depend

on the primary key, the whole primary key and nothing but the primary key. It however can be argued
that some of the data is not atomic. The GameHistory.CustomSettings and
CampaignLevels.BattleSettings both contain stringified JSON strings, which obviously is not atomic.

backend an understanding of the frontend, as that would remove a lot of the encapsulation between
the frontend and backend modules, which I value as more important than the atomicity of the data,
especially when the data does not have to be read or modified in the backend.

Cascade
The only record which would be reasonably deleted with a DELETE query would be a user record.
Cascade delete should be toggled for the UserCampaign table, as the campaign is meaningless without
the userid being valid. The GameHistory records for the deleted records should also be deleted, which
then would delete the links in the Links table which correspond to the deleted games.

Finley Cooper 7588 50639

17

Data Structures
Most data in the engine is stored using integers, because we are restricted by the browser with how
much memory we can use, and we get ability to use very fast operations such as bitwise AND, OR,
XOR, and left and right shifts, which I use extensively in the engine, especially for functions which
could be called tens of millions of times. Here is a list of some of the opaquer data structures used
exclusively in the engine.

SquareCollection Bitboard (bitfield)

This class is an interface in front of a 64-bit unsigned integer which represents some attribute for each
of the square on a chess board. This is used in the <Board>.collections arrays, where each side of the
board an array of SquareCollections for each piece representing if a specific piece is present on each
square. This is used on top of the <Board>.squares array, as we can use bitwise operations for
example to calculate captures, by ANDing the bitboard of attacks and the bitboard of enemy pieces,
which is much faster than looping over the entire list of squares. Before when I just had the squares
array, the function for calculating if the king was in check would be called millions of times in the
PERF tests, and it would be incredibly slow, as the entire board would have to be iterated over each
time. With the bitboard, pins can be calculated easier, so less psuedolegal moves must be verified by
playing them on the board, and the bitboard can calculate if the king is in check by just ANDing the
attacks of enemy pieces with the bitboard of the king.

Move Bitfield

Moves are encoded into a 16-bit unsigned integer using the bitfield described in the Encoding Moves
section of the chessprogrammming wiki. This reduces their memory consumption and allows for easy
calculating by using binary masks for looking at a specific property of a move. The corresponding
move for each flag can be found on the wiki, which I have used.

Piece Bitfield

Again,
of the board, as each square has a binary value for each piece. The 3 least significant bits are used to
store the type of the piece (queen, king, bishop, etc.) and the 4th bit represents if the piece is black, and
the 5th bit represents if the piece is white. This allows for easy checks if a piece is a specific colour, as
we can use the mask 0b11000 which gives 8 if the piece is black and 16 if the piece is white and 0 if
the square is empty.

Game State Bitfield

When a move is played on the board, important attributes of the board which are about to change are
stored into the game state, which is then stored in the game state stack. This allows the moves to be
unplayed, and decreases the memory used by the board if we used a larger data structure like a
dictionary. The attributes we store are the current side to move, the file which en passant can happen
on, castling rights, and the piece captured the move before. With all this information we can unplay
the entire history of moves played on the board.

Finley Cooper 7588 50639

18

Past Game States/Boards Stacks

The past game states and past board hashes are stored in a stack. The same board is used while moves
are played on the board while the engine is calculating, so the engine must be able to reverse all the
moves played. The past game states stack allows this by storing the most recent game state on the top
of the stack. If a new move is played, the current game state is pushed on the top, and if a move needs
to be unplayed, then the top game state is popped and set as the current game state. The past boards
stack also works in a similar fashion, but instead of holding the game state, it holds hashes of the past
board positions, which are used to detect draws due to repetition. A stack is the best structure as
searching for the most recent game state is always on the top of the stack, so it can be accessed in
constant time.

Squares Array

One way the board is represented is through a 1D array which represents each square on the board.
Using a 1D array over a 2D array gives us more freedom to pre-
movement. For example, to move a white pawn up a square, we add 8 to its index, and a capture
represents the offsets of 7 and 9 for the left hand and right hand captures accordingly. We can also
give repeated offsets of multiples of 8 and 1 for sliding pieces up and right accordingly, and 7 and 9
for the leading and adjacent diagonal. When pieces wrap around, we introduce checks to prevent this,
for example a pawn on the 24th index cannot capture a piece on index 31. The array has a fixed length
of 64, with each element being a 5-bit integer representing a piece using the bitfield discussed earlier.

Collections Array

This is the second way pieces are stored on the board, which uses a 2D array and stores, not the pieces
and square indexes, but a bitboard for each type of piece. Each 64-bit

s We have a bitboard for the white king,

Using
the methods on the Piece classes and SquareCollection class, we can write very clear code even
though the collections have been abstracted so much. The Pieces enum lets us index the Collections
array with identifiers instead of just integers, making the code very readable.

Removing a piece from the collections square after a piece has moved.

Adding a Rook to square 3 after kingside castling has occurred (white).

Calculating captures for a non-blockable piece (king, knight, pawn) after attacks have been
calculated, using the SquareCollection with the bitboard.
Captures

Finley Cooper 7588 50639

19

User Interface

Prototype Screen Designs

Home Route This is the home screen where the user can choose from the given options on what to
imple layout make SVGs for each option, so they feel more interactive.

the options vertically .

Custom Route This is place where the user creates the custom game by moving the sliders. I d
-5.

Finley Cooper 7588 50639

24

Algorithms

Elliptic Curve Signing Algorithm

An elliptic curve defined on the field Fp is represented by the equation y2 = x3 + ax + b (mod p)

The general steps for the signing algorithm are described in the US government document here
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf.

implemented the algorithm fully,
as the document only outlines general guidance for the mathematical steps to ensure security, not the
actual implementation which I created. The curve I used (secp256r1) was chosen from the document
here http://www.secg.org/sec2-v2.pdf, but my implementation extends across all prime fields with
b 0 and order less than 2512.

The point at infinity is the point at which the gradient of the curve at the point diverges to infinity.
This will lead to divide-by-zero errors in our calculations, so instead we define the point at infinity to
be (0, 0), which does not lie on the elliptic curve given b 0
consider the algebraic group of points on the elliptic curve generated by applying a generator point to
itself repeatedly using elliptic curve point addition. The generator point and the order of the group is
given in the document, I only must worry about implementing the elliptic curve scalar multiplication.

To do scalar multiplication on a point, we just conduct point-to-point addition repeatedly.

This results in s total operations, giving the algorithm a time complexity of O(s), which is too slow, as
our scalar, s, ranges from 0 to 2256. Instead, we can use the double-and-add algorithm, where we split
the addition into powers of two. We can do this as associativity is guaranteed by the group axioms.
Below is an example with s = 59.

This means we are computing the same number of operations as the bit length of the scalar, s, giving a
time complexity of O(log2(s)), which is much more suitable for larger numbers. We can implement
this by creating a binary mask which represents a power of two and sliding the mask from the LSB of
the scalar to the MSB, and doubling a point with each slide, adding this point onto the point total only
if the mask matches at the specific bit of the scalar.

Pseudocode - & represents the bitwise AND operation, << represents the binary left shift operation
and +E represents elliptic curve point addition, represents the point at infinity

Finley Cooper 7588 50639

25

The point-to-point addition, given two points (A, B) and (C, D), can be calculated using these two
equations well known elliptic equations.

Where is the gradient of the line connecting the two points. These equations only work when the
two points are not group inverses (so A -C), otherwise the result is the point at infinity (the identity
element). By the identity group axiom, if one of the points are the point at infinity, the result is the
other point unchanged. To calculate the gradient, the simple rise-over-run equation words fine, but if
the points are equal, then we will have to find the gradient using the derivative of the elliptic curve
equation.

We then can use the three equations above.

Pseudocode Let denote the point at infinity. Let % represent the modulo operator. Let /P represent
the multiplicative inverse of two numbers modulo p, where p is the order of the field which the elliptic
curve is defined in.

Finley Cooper 7588 50639

27

For checking that a signed message has indeed been signed by the private key given, we can use the
public key to check that the signature is valid for the message given. This subroutine is in the
EllipticCurve class, which has read-only attributes defining, a, b, p, n, and such.

Pseudocode Checks that the binary message matches the signature, given the public key. Let
represent elliptic curve scalar multiplication. Let /n represent the multiplicative inverse of two
numbers modulo n. Let +E represent elliptic curve point to point addition.

Finley Cooper 7588 50639

28

Alpha-Beta Pruning

To find the best move in a position, we get all the moves in the position, and then play each move on
the board. This is repeated recursively up to some depth value, where the board is then evaluated. To
decide which branch of the move tree to follow we use the minimax algorithm. As chess is a zero-sum
game (everything good for us is bad for our opponent and visa-versa), we are trying to maximise our

Doing this by checking every node, we
will have to check, m branches per each new branch d times, where m is the number of moves in a
position, and d is the depth. This gives a time complexity of O(md). We can optimise this by using
alpha-beta pruning which have a guaranteed worse
evaluation than the current best move. The alpha value represents the best evaluation for the
maximising player, and the beta value is the best evaluation for the minimising player. In the worst
case, we never prune any branches (this would happen if we started searching for moves from worse
to best). In the average case, half of the branches will be cut, giving a time complexity of O(md/2), but
we can order the moves by looking at captures of high value pieces first, to increase alpha and
decrease beta quicker, giving a better-than-average time complexity almost every time. To sort the
moves, we use insertion sort, as it has the one the best performances for arrays with about 15
elements, and also sorts the moves in place, giving a space complexity of O(1).

Pseudocode Slightly different than the code in Search.ts or the
simplifyPosition function, only the alpha-beta pruning code.

the inequality, Infinity > x, for all x.

Finley Cooper 7588 50639

29

Board Hashing

A simple hashing algorithm to detect draws in the Past Game stack is employed. The past board stack
should
JavaScript is 32 bits (without using the much slower Bigint type), which gives us 232 possible hashes,
making collisions almost impossible. However, we want to make sure that the hashing algorithm is
chaotic, so slightly changing the initial conditions greatly changes the output, while still being
deterministic. This is because the boards that we are hashing are very similar as only one move
separates a pair of boards. n XOR hashing algorithm, shifting each piece value by the

We will have to binary shift the index to the left by one, as the
maximum value of the index is 63, which will make the hash too big at 263. Now shifted, the
maximum value is 31, which makes the hash have a size of 231, within the limit. We set the hash
initially to the s game state, so that contributes to the hash also.

Pseudocode Actual code uses an array reduce function but results in the same output. Let ^
represent the XOR operation << and >> represents left and right shifts accordingly.

Finley Cooper 7588 50639

30

Adding Positional Weaknesses

When we want to make the engine play worse, one of the techniques that I will use is adding Gaussian
noise to the piece square tables. These tables, which I found on the chessprogrammming wiki, show
the engine which squares are the best for each piece, encouraging the engine to make progress, castle,
defend the king and move towards the opponent. By adding noise to these boards, the engine will play
worse, which we want as part of the customisation.

To add Gaussian noise, we will sample from the normal distribution for each square, with a different
variance, depending on how badly we want the engine to play, represented by the positionPlay
customisation setting from 0 to 100. With 100 we want no variation, and with 0 we want maximum
noise. Any variation more than 50 points will cause the engine to start sacrificing pieces to get onto

, so we will say that a noise of +50 points should only happen in
1% of cases with maximum noise.

To map our customisation setting to the standard deviation, we can use an inverse linear relationship.

In the case where the positionPlay is 100, we will just return the piece square tables without noise.

To sample from X, we must use some transformation that takes a uniform random number in the
interval (0, 1), and outputs a normally distributed number, as in JavaScript we can only generate
uniform random numbers in the interval (0, 1). We can use the Box-Muller transform to create
standard normal random numbers and multiply by the standard deviation to get our noise for each cell.

Pseudocode Adding Gaussian noise to the piece square tables, using the Box-Muller transformation.
Table cells are modified in place n.

Finley Cooper 7588 50639

33

Hardware and Security

As my project is built using Docker, it can run on any platform which supports Docker (Windows,
Linux, MacOS, ChromeOS). As my project is a full stack web application, some expertise would be
required to run the program from its source code, set up port forwarding, and domain setup. Using
Docker eliminates most of the complications, and the primary target hardware will be the Google
Cloud Platform which supports Docker. More specifically, the target product is the Compute Engine,
with an e2-micro instance (10GB disk, 1GB RAM, 1 CPU), which can run the project smoothly. A
main reason for choosing the e2-micro instance is that Google (as of October 2023) allows free access
to one month of hours of an e2-micro instance per month (with some restrictions), so the client

11, 10, Debian Buster, Bullseye, and Bookworm with no
problems. For the operating system within the Docker images, I chose Linux Alpine for the frontend
container, due to the lower RAM usage and security benefits of a lightweight Linux distribution like
Alpine the container
would use virtual memory, which would make it much slower. For the backend container, I chose

-bullseye Linux image, because I had some problems installing Gunicorn and Flask
within the container using Alpine Linux. I only chose Bullseye Debian because it was the latest stable
version when I started development (before June 2023).

My users will access the system using any up-to-date
touchscreen users, as a full responsive design is way too far outside of the scope for this project. The
project will be built to the standards of the current ECMAScript standard, as many of the features
such as JavaScript bigint and HTML5 canvas depend on the newest browser versions.
project on Gecko browsers (Firefox) and Chromium browsers (Google Chrome, Microsoft Edge) and

slight disparities, most notability in the rendering of the SVGs on the Home route.

storage of
the passwords. on
the request body from the user to the Cloudflare server. For storage, I do not store the passwords in
plaintext, instead I store the password hashes using the secure SHA-256 hashing algorithm. I also add

hash tables, as each
password gets added some random bits to the start of the password, adding uniqueness between
precomputed hash values.

-based system, where the server signs a proof of the
and authorisation level, which is then verified in each API request for user data. The tokens are signed
using the elliptic curve secp256r1 which has been generally agreed on to be secure. Authorisation is

or a game id to have access to. A default authorisation level 1 only gives access in the user scope in
the API, and a level 0 only gives access to resources which match both the game id and user id scope.
The admin authorisation level is 5 and can access all resources. The scopes and authorisation level
cannot be changed by the client as this would change the hash of the message, invalidating the
signature, which would result in the request being denied. A different public-key private-key pair can
be created at any time, which invalidates all previous keys given out which could be done in the case
of a leak of the private key. The k-value calculated when creating signatures is a cryptographically
secure random number, preventing the extraction of the private key using mathematical analysis of the
signatures generated.

The database is normalised to keep data integrity between tables and cascade delete is enabled for the
relevant tables, so if a user is deleted, other records containing the user id are also deleted.

Finley Cooper 7588 50639

34

3 Testing

Test Plan
Before I start testing, I first want to break the testing up into different sections which reflect how the
different modules of the code is programmed. This should give me less errors at once and let me be
assured that important areas of the code are perfect.

Test 1 Firstly, I must make a chessboard where the user can move pieces using the drag and drop
action, where the state of the chessboard is stored programmatically so the engine can play against the
user. In this test the board will be creates using a CSS grid, to place the squares, and the pieces will be
transformed to their position on the board as SVG elements. When dragging and dropping, the piece
should follow the mouse and snap to the closest square. Evidence of this test will be done through
screenshots and console outputs, and the dragging and drop behaviour can be later verified in other
videoed tests.

Test 2 For each piece on the board, the piece attacks a certain pattern of squares. Here bitboards are
used to represent the set of squares which are attacked. This should provide foundation for the move
generation algorithm. For each piece, the attacks should be calculated and output in a bitboard. The
squares are stored in a 1D array, so different offsets are required to translate the piece depending on if

be precomputed and hardcoded into
the program, and read from at runtime. This is tested using a function to output the binary
representation of the bitboard for each attack in each piece. A range of normal tests (centre of the
board) and boundary tests (near the edge of the board or near the corners) should be completed.

Test 3 The final move generation functions are the most complicated, but the most important part of

playMove and unplayMove methods. To provide the highest level of rigours testing, I will have an
implementation of the PERFT test. Using test positions created and shared in chess programming
forums, I can compare the number of leaf nodes in my move generation tree against the community
agreed values. This should be done in the millions of nodes to prevent any edge cases from slipping
through, as only one error could lead to errors in the evaluation of moves. Video evidence of the
PERFT testing should be provided.

Test 4 Using an implementation of the minimax algorithm with alpha-beta pruning, along with a
simple evaluation function for the leaf nodes of the search tree, the engine should be able to beat most
low-intermediate users. Creating an interface between engine Board class and the React app board
created in Test 1, should allow for the user to play against the engine. Video evidence of more than
one user playing against the engine should be provided.

Test 5
authentication is kept secure. For checking the passwords, the passwords should be stored using only

Also, I have chosen to use a
token-based system for authentication to speed up API requests and allow the sharing of signed
tokens. The tokens should be signed using the Elliptic Curve Digital Signature Algorithm on the curve
secp256r1 up to the standard created by the National Institute of Standard and Technology. This is
important as we are dealing with protected user data, so the signing algorithm should be tested using
agreed values using a digital elliptic curve calculator. Evidence of this should be given using console
outputs.

Test 6 The Login and Signup form should be created to allow the user to be able to signup or login
to the web app without any misunderstandings and provide useful and clear errors to the user where
data inputted is wrong, missing or otherwise invalid. This can be verified using video evidence and

er testing.

Finley Cooper 7588 50639

35

Test 7 To allow the web app to continue, a strong API should be provided to allow the web app to
access resources pertaining to the user to correctly render information on the page. The API should
use correct HTTP response codes which should be tested, and data provided must be accurate
protected behind the token authorisation system. This should be tested using an API querying tool,
such as Postman which allows me to create requests to send to the server directly. The server console
should also be visible on screen to catch any errors and show each request being sent to the server.

Test 8 The custom game and review functionality should provide the user with the customisation
settings programmed in engine.
signed up to the web app. This can be verified using a mixture of screenshots and video tests.

Test 9 The adventure mode should be tested in full to make sure the difficulties are appropriate, and

they finish the game which should be downloadable from a HTML canvas element to a png file. This
should be verified using a mixture of screenshots and a video of the entire adventure mode
playthrough.

Test 10 Final testing of the system should be conducted, testing all possible systems at once in one
continuous testing video. Testing of the name change, and account deletion systems should also be
tested for the first time. It would also be useful for a full end-to-end test by one other user to check the
system is easy to use. This should be recorded too.

Overall, the system should be tested by at least 3 people (including myself), with all players in
my target user range (low to intermediate).

Finley Cooper 7588 50639

36

Test 1 - User interface for the board

Tests for the correct setting up of a HTML chessboard with programmatically placeable pieces on
each square and drag-and-drop behaviour for each piece.

Test
Number

Description of
test

Expected
Result

Actual Result Fixes
Required

1a(i) Create the chess
board that the
user can see and
display it
correctly for the
user

A grid of a
chessboard
with numbers
on each
square (for
development)

Set a CSS
grid for each
square of the
chess board
8 by 8
instead of
flexbox.

1a(ii) Create the chess
board that the
user can see and
display it
correctly for the
user

A grid of a
chessboard
with numbers
on each
square (for
development)

Black and
white
squares
should be
switched,
and the
colours
should be
adjusted for
viewing
ease.

1a(iii) Create the chess
board that the
user can see and
display it
correctly for the
user

A grid of a
chessboard
with numbers
on each
square (for
development)

None

1b(i) Display Test
Position 1 (see
in next section)
on the board

Test
Position 1
with numbers
on each
square

Translated
the pieces by
the negative
of its row
squares,
instead of
the positive
of its row
squares (as
pieces start
in the top left
corner)

Finley Cooper 7588 50639

37

1b(ii) Display Test
Position 1 (see
in next section)
on the board

Test
Position 1
with numbers
on each
square

Iterated the
wrong
direction
through the
list of
squares

1b(iii) Display Test
Position 1 (see
in next section)
on the board

Test
Position 1
with numbers
on each
square

None

1c(i) Piece dragging
behaviour

Be able to
click and
hold a piece
to drag it

Piece was
not on the
cursor; it
was off by
about a
half
square

Changed the
dragging
piece offset
to half a
square
instead of a
whole square

1c(ii) Piece dragging
behaviour

Be able to
click and
hold a piece
to drag it

Piece was
correctly
under the
cursor.

None

1d(i) Piece dropping
behaviour
standard input

Drag and
drop the
pawn on e2
to e4

None

1d(ii) Piece dropping
behaviour
erroneous input

Drag and
drop the
piece to
outside the
board should
return the
piece to its
original
square

Piece
returned to
its original
square
when
dropped
outside of
the board

None

Finley Cooper 7588 50639

38

Test 2 - Attack Generation
Generate the attack patterns for each piece irrespective of the placement of pieces or state of the
current board. We store the attack patterns in the Bitboard data structure, so for each test the test
output should contain a binary representation of the bitboard which represents the board when
formatted 8x8.

Test
Number

Description
of test

Expected
Result

Actual Result Fixes
Required

2a(i) Get knight
attacks on an
empty board
on square 39
(normal data)

A bitboard
binary
representat
ion with
ones on the
squares 54,
45, 29, and
22 only

Bitboard
should be
mirrored
from the
user
displayed
board as the
function has
done the
moves from
square 24
not 39

2a(ii) Get knight
attacks on an
empty board
on square 39
(normal data

A bitboard
binary
representat
ion with
ones on the
squares 54,
45, 29, and
22 only

None

2b(i) Get knight
attacks on an
empty board
on square 0
(boundary
data)

A bitboard
binary
representat
ion with
ones on the
squares 17
and 10
only

None

2c(i) Get knight
attacks on an
empty board
on square 64
(erroneous
data)

A suitable
error
logged to
the console

None

2d(i) Get sliding
piece attacks
on an empty
board on
square 36
(rook offsets)

1s on the
5th rank
and on the
e file, with
zeros on all
other
squares

None

Finley Cooper 7588 50639

39

2e(i) Get sliding
piece attacks
on an empty
board on
square 0
(bishop
offsets)

1s on the
diagonal
from the
bottom left
to top
right, with
zeros else

None

2f(i) Get white
pawn attacks
on square 36
(normal data)

1s on
square 43
and 4, with
zeros on all
other
squares

None

2g(i) Get black
pawn attacks
on edge
square 24
(boundary
data)

1 on 17
only, all
others
should be 0

None

2h(i) Get black
pawn attacks
on last file,
square 0
(erroneous
data)

A suitable
error
thrown in
the console

Added a
check for
the pawn
being on the
last file,
throwing an
error if it is.

2h(ii) Get black
pawn attacks
on last file,
square 0
(erroneous
data)

A suitable
error
thrown in
the console

None

2i(i) Get king
attacks on
square 0

1s on the
squares 1,
8 and 9,
with zeros
on all other
squares.

None

Finley Cooper 7588 50639

40

Test 3 - Move Generation
PERFT tests are tests where the engine analyses the number of moves in a position and plays each
move on the board. For each move played, that board is then PERFT tested recursively until a
maximum depth is reached. The test then outputs the number of nodes reached (positions where the
final depth has been reached). All tests are done on the same board in memory, playing and unplaying
moves, so we also test the delicate play move and unplay move methods. Any major errors missed in
this test will cause the engine to be obviously misevaluating positions and playing very poorly.

PERFT test positions and community agreed results at https://www.chessprogramming.org/Perft_Results

Test Position 1 Test Position 2 Test Position 3 Test Position 4

Test Position 1 it a
good candidate for the first test position, as I ran into each bug one at a time, whereas I might have got
overloaded with bugs if I used a more complex position.

Test Position 2 was chosen as both sides can promote, promote with capture, black can castle both
sides, and en passant is possible. These moves are the hardest to code so I could uncover many bugs

for in Test m
and long castling functionality.

Test Position 3 was chosen as the number of pieces is much smaller, so I could go more moves
deeper into the analysis which would test the unplay move function further.

Test Position 4 was chosen as it caused disagreements in early 2000s about the correct PERFT results
and tested castling further than Test Position 2.

Test Number Test Description Expected
Result

Actual
Result

Fixed Required

3a(i) Calculate number of
moves from position
with depth 1 in Test
Position 1

20 Nodes 20
Nodes

None

3b(i) Calculate number of
moves from position
with depth 2 in Test
Position 1

400 Nodes 400
Nodes

None

3c(i) Calculate number of
moves from position
with depth 3 in Test
Position 1

8902
Nodes

8902
Nodes

None

3d(i) Calculate number of
moves from position
with depth 4 in Test
Position 1

1972781
Nodes

1924305
Nodes

The value of captured pieces
was not being saved to the
board's past game state stack,
so captures were not being
unplayed correctly. The rank
that a pawn needed to be on to

Finley Cooper 7588 50639

41

be able to capture and
promote was set to 6. (It
should have been 6 when
white and 1 when black.)

3d(ii) Calculate number of
moves from position
with depth 4 in Test
Position 1

1972781
Nodes

1972781
Nodes

None

3e(i) Calculate number of
moves from position
with depth 5 in Test
Position 1

4865609
Nodes

4865609
Nodes

None

3f(i) Calculate number of
moves from position
with depth 6 in Test
Position 1

119060324
Nodes

1190603
24
Nodes

None

3g(i) Calculate number of
moves from position
with depth 1 in Test
Position 2

6 Nodes 6 Nodes None

3h(i) Calculate number of
moves from position
with depth 2 in Test
Position 2

264 Nodes 258
Nodes

Accidental overwriting of
pieces between the king and
the rook in castling

3h(ii) Calculate number of
moves from position
with depth 2 in Test
Position 2

264 Nodes 264
Nodes

None

3i(i) Calculate number of
moves from position
with depth 3 in Test
Position 2

9467
Nodes

9461
Nodes

Unable to promote to a knight,
instead the option to promote
to a rook was repeated

3i(ii Calculate number of
moves from position
with depth 3 in Test
Position 2

9467
Nodes

9467
Nodes

None

3j(i) Calculate number of
moves from position
with depth 4 in Test
Position 2

422333
Nodes

422333
Nodes

None

3k(i) Calculate number of
moves from position
with depth 5 in Test
Position 2

15833292
Nodes

1583415
2 Nodes

Queen-side castling could
occur even if there was a
piece on b1/b8

3k(ii) Calculate number of
moves from position
with depth 5 in Test
Position 2

15833292
Nodes

1583329
2 Nodes

None

3l(i) Calculate number of
moves from position
with depth 6 in Test
Position 2

706045033
Nodes

7060450
33
Nodes

None

Finley Cooper 7588 50639

42

3m(i) All tests from 1.g to 1.l
repeated, but with the
board in Test Position 2
but flipped with white
as black and black as
white (mirrored)

6 Nodes,
264 Nodes,
9467
Nodes,
422333
Nodes

6 Nodes,
264
Nodes,
9467
Nodes,
422333
Nodes

None

3n(i) Calculate number of
moves from position
with depth 1-7 in Test
Position 3

14 Nodes,
191 Nodes,
2812
Nodes,
43238
Nodes,
674624
Nodes,
11030083
Nodes
178633661
Nodes

14
Nodes,
191
Nodes,
2812
Nodes,
43238
Nodes,
674624
Nodes,
1103008
3Nodes
1786336
61
Nodes

None

3o(i) Calculate number of
moves from position
with depth 1-5 in Test
Position 4

44 Nodes,
1486
Nodes,
62379
Nodes,
2103487
Nodes,
89941194
Nodes

44
Nodes,
1486
Nodes,
62379
Nodes,
2103487
Nodes,
8994119
4 Nodes

None

All tests from Test 3 (excluding 3G-3L) are setup to run automatically and I retested the
program whenever I made any changes to the engine.

Code for the automatic testing is in frontend/src/routes/Test.

Fully automatic testing (1 depth below max depth tested in Test 3)

Link to video: https://www.youtube.com/watch?v=o8PPSLyWkxk

Finley Cooper 7588 50639

43

Test 4 - Engine
Tests here are done on the Search function, the Evaluation function, and the Engine class which acts
as an interface between the board the user sees and the rest of the Engine.

Test User 1 Me

Test User 2 The user in Test 4

Test User 3 The user in Test 10

Test
Number

Description of test Expected
Result

Actual Result Fixes Required

4a(i) Zero depth
evaluation of Test
Position 1

0
centipawns

0 centipawns None

4b(i) Zero depth
evaluation of Test
Position 2
(mirrored)

A positive
value
(white is
winning)

105 centipawns None

4c(i) Depth 3 Engine
against Test User 1

The engine
beats Test
User 1

Check video link.
The engine played
very strangely,
loosing pieces and
lost the game, but not
playing randomly or
purposely bad

The alpha and beta
evaluations should
have been recursively
given as the negative
of the current alpha or
beta (as a position
good for white is bad
for black).

4c(ii) Depth 3 Engine
against Test User 1

The engine
beats Test
User 1

Check video link.
The engine played
much better,
eventually getting
checkmate, but Test
User 1 drew the
game by repetition
which the engine did
not call.

A check for draws by
repetition was added,
by storing all past
positions and
checking if any had
come up before when
analysing a new
position.

4d(i) Depth 3 Engine
against Test User 2

The engine
beats Test
User 2

Check video link
and Transcription 1
as the room was
quite loud and some
of the conversation
might be hard to
hear. The engine
beat Test User 2 as
expected. Test User
2 also made some
comments on the
design (see
Transcription 1)

Added a colour
indicator when to
where the engine just
moved as Test User 2
struggled to see the
engine checking him.
Also pushed the

calculation function
below the render
function, so the board

Test User 2
described.

Finley Cooper 7588 50639

44

Test 5 - Cryptographic functions
These tests are to make sure both the password hashing and salting is done correctly, and the token
signing is working and secure.

Expected results for the elliptic curve calculations were calculated on the website
http://christelbach.com/ECCalculator.aspx with the curve parameters of secp256r1.

Test
Number

Test Description Expected Result Actual
Result

Fixes Required

5a(i) Generate a salted
password hash and
recheck the
password hash to
verify the password

The program outputs a
long hex string,
followed by an integer

T when
the hashes match

Screenshot 1 None

5b(i) Double the
generator point on
the elliptic curve

Logging of the point:
(5651521979069117141
31090 6242040,
3377031843712258259
22371 7583569)

Screenshot 2 I was using normal
division, not modular
division, so my
calculations were
being done with
floating-point
numbers.

5b(ii) Double the
generator point on
the elliptic curve

Same as above Screenshot 3 None

5c(i) Compute
7592346587435283
943G on the elliptic
curve (arbitrary
scalar)

Logging of the point:
(4565756172492680224
40549 0027541,
1071632667888171273
08136 649759)

Screenshot 4 None

5d(i) Sign a random
string of bytes
using and private
key and verify the
signature using the
public key.

A very long integer
being logged as the
signature, and the

the signature is verified.

Screenshot 5 None

5e(i) Sign a Python
dictionary and
output a base64
encoded JSON
message with the
signature attached.

A base64 encode string
starting with ey (the
base64 encoding of the

and a logged
python dictionary with

False

Screenshot 6 The differences
between spaces
between each attribute
when encoding the
dictionary into JSON,
changed the message
slightly.

5e(ii) Sign a Python
dictionary and
output a base64
encoded JSON
message with the
signature attached.

A base64 encode string
starting with ey and a
logged python
dictionary with the

False

Screenshot 7 None

Finley Cooper 7588 50639

45

Test 6 - Login and Signup form
These tests are to test that the login and signup form cannot send invalid information to the server.
Tests 6a-6m are on the signup form, and tests 6n-6q are on the login form. A video of all tests passing
is in Testing video links.

For the purposes of the tests, the password input type was removed, so the value of the password input
box can be viewed by the examiner.

Test
Number

Test
Description

Expected Result Actual Result Fixes Required

6a(i) Entering an
invalid email

The email box goes red and The email regex
did not work on
Firefox, so I
found a new
Regex to use.

6a(ii) Entering an
invalid email

The email box goes red and Check video link.
The correct error was
shown.

None.

6b(i) Entering a
valid email

The email box goes green. Check video link.
The box accepted the
email.

None.

6c(i) Entering the
too short
display name

The display name box goes
red and display the error

between 2
and 32 characters and not

Check video link.
The box correctly
rejected the name.

None.

6d(i) Entering a
name that
starts with a

The display name box goes
red and displays the error

between 2
and 32 characters and not

Changed the
regex to
disallow spaces
at the start of
the names.

6d(ii) Entering a
name that
starts with a

The display name box goes
red and displays the error

between 2
and 32 characters and not

Check video link.
The box correctly
rejected the name.

None.

6e(i) Entering a
valid name

The display name box goes
green and accepts the name.

Check video link.
The box correctly
accepted the name.

None.

6f(i) Entering the
valid password

The password box goes
green and accepts the
password

Check video link.
The box correctly
accepted the
password.

None.

6g(i) Entering the
invalid
password

(no number)

The password box goes red
and displays the error

between 8 and 32
characters, at least 1
uppercase, 1 lowercase, and

Check video link.
The box correctly
rejected the
password.

None.

6h(i) Entering the
valid password

The confirm password box
goes red and displays the

Check video link.
The box correctly

None.

Finley Cooper 7588 50639

46

and the invalid
confirm
password of

rejected the
password.

6i(i) Entering the
valid password

in both the
password and
confirm
password
boxes

Both boxes go green and
accept the password

I was
comparing the
wrong
variables. Also,
the green was
shown under
the confirm
password input,
so I fixed that.

6j(i) Entering the
valid password

in both the
password and
confirm
password
boxes

Both boxes go green and
accept the password

Check video link.
The box accepted the
password.

None.

6k(i) Submit with
empty display
name input

The display name box goes
red and displayed the error
This field must not be left

The form is not
submitted

Check video link.
The form is not
submitted.

None.

6l(i) Submit with
an invalid
email

No change (the error should
already be showing). The
form is not submitted.

Check video link.
The form is correctly
not submitted.

None.

6m(i) Submit with
an email with
an account
which already
exists

The form is not submitted,
and the user is given an
error message showing
them an account already
exists with that email.

Check video link.
The form is correctly
not submitted, and an
error is shown.

None.

6n(i) Submit with
all details
valid.

The form is submitted, and
the user is redirected to the
login form

Check video link.
The form is
submitted, and the
user is redirected
correctly.

None.

6o(i) Login with the
incorrect
details from
the previous
tests

The boxes go red and the
error The credentials

is
displayed

Check video link.
The correct error is
returned

None.

6p(i) Login with the
correct email
but incorrect
password.

The boxes go red and the
error The credentials
provided were invalid is
displayed

Check video link.
The correct error is
returned

None.

6q(i) Login with all
correct details

The user is redirected with
a cookie for authentication
and redirected to the root
page. The cookie is
correctly signed and

Check video link.
The user gets the
cookie and is
correctly redirected.

None.

Finley Cooper 7588 50639

47

Test 7 - API and Authorisation
These tests are on the REST API which acts as an interface between the web app and the database. It
also handles logic for determining which users can access what data. Testing here is done using
Postman to construct the web requests and analyse the responses. This will also test the SQL database
queries. on the

All the tests ran correctly which I was expecting, since almost all these functionalities had been tested
before in Test 6, however while making the tests, I did find one error, where providing a single
missing attribute with a non-empty request body would cause an error, which I fixed before recording
the tests. The tests were recorded (go to Testing Video Links). At the start of the video, I delete the
SQLite database and I also have a terminal on screen
which logs all the requests and responses from the server.

Test
Number

Test Description JSON Response

7a Signup with invalid email Valid email not provided in the request

7b Signup with invalid name (trailing space) Valid display name not provided in the request

7c Signup with invalid password (too long) Valid password not provided in the request

7d Signup with empty request body No data was provided in the request

7e Signup normally Account created - Please Login

7f Login with incorrect password The credentials provided were invalid

7g Login normally Successfully logged in (token and isLoggedIn
cookie should also be sent in the response Set-
Cookie header).

7h Get user (self with @me) User data

7i Get user with user id Same as above

7j Get a different user Forbidden

7k Store a chess game under our user id Game successfully archived

7l
attribute set in the request body

All game data not provided in the request

7m Store a chess game under a different user
id

Forbidden

7n Get all games from self Data sent from test 7k

7o Get game from 7k by its id Same as above

7p Get game with invalid id Game does not exist

7q Get text from adventure level (no cookie) Adventure level data

7s Change user adventure level to 2. User level id updated (check by conducting test
7i again)

7t Change user display name User display name updated (check by conducting
test 7i again)

7u Create sharable link from game in test 7k A link path starting /s/ is given.

7v Delete account Cookies are revoked and new account can be
made by conducting test 7e again

7w Follow shareable link (while not logged
in) to get a game scoped token. Conduct
test 7o again to verify the token works

HTML response and tempToken is sent. The
game is sent in response to test 7o

7x Follow invalid shareable link Link does not exist (Plain text not JSON)

7y Sign in with admin account Successfully logged in.

7z Get all users (only works with admin) Array of all users on the database.

Finley Cooper 7588 50639

48

Test 8 - Custom Game and Review
This is testing for the custom game feature and the review functionality. This is at the core of the
project: the vast customisation settings for the engine are what differentiates my system from the
existing systems. It is also important that the difficulty setting is wide enough to allow a range of
users to be able to use the system, otherwise users could find themselves locked out of the adventure
mode, not being able to pass the level.

Test
Number

Test Description Expected Result Actual Result Fixes
Required

8a(i) Make sure the values of
the sliders are recorded
in the engine. (Max on
all sliders)

Engine depth = 4
Position Strength = 100
Aggressiveness = 100
Blind Spots = 50
Piece Exchanging Tendency
= 100

Screenshot 8
(all correct
apart from blind
spots which is
incorrectly 100)

Changed
limit on
blind
spot
slider to
100.

8a(ii) Same as above Same as above Screenshot 9
(all correct)

None.

8b(i) Test the difference
between depth at 1 and
depth at 4.

Depth at 1 should make
moves almost instantly and
depth at 4 should take up to
30 seconds per move.

Check video
link (0:00-1:25)
As expected

None.

8c(i) Test the difference
between positional
strength 0 and 100.

With the positional strength
0, the pieces will be spread
out randomly, with positional
strength 100, pieces will tend

in the middle of the board.

Check video
link (1:25-3:00)
As expected

None.

8d(i) Test the difference
between aggressiveness
0 and 100.

The engine should keep its
pieces on its own side at low
aggressiveness and throw its
pieces at the opponent at
high aggressiveness.

Check video
link (3:00-5:05)
As expected

None.

8e(i) Test the difference
between blind spots
from 0 to 50.

The engine should play
normally at 0, and extremely
poor at 50

Check video
link (5:05-7:30)
As expected

None.

8f(i) Test the saving and
archiving of a game, and
the review of the game
by stepping through
move-by-move.

While testing, a game should
be finished, saved, and then
rewatched, with the save
moves shown.

Check video
link (7:30-8:34)
As expected
(ignore the
other games on
the history from
past tests)

None.

8g(i) Share the link from the
game in 8f and view the
game while not logged
in.

To be able to view the game
the same as in 8f after being
redirected from the /s/ link.

Check video
link (8:34-9:13)
As expected

None.

8h(i) Same as 8g but logged
into a different account
not normally available
to access the game.
(Check the temp token
overrides the normal
token.)

Same as above, and not be
able to view the game when

removed, getting the
Forbidden 403 HTTP status
code.

Check video
link (9:13-
10:14) As
expected

None.

Finley Cooper 7588 50639

49

Test 9 - Adventure Mode
This is testing for the main feature of the project, the adventure mode.
adventure mode can be beaten by most chess players, and that there are no bugs that prevent the user
from advancing, locking them out of the main functionality of the project. We will also test the round
up analysis when the user finishes the adventure mode, and test the updating and exporting of the
feature, as this is also one of the main differences that this project has over existing online chess sites.

Test
Number

Test
Description

Expected Result Actual Result Fixes Required

9a(i) Test the
positioning
and size of
the story
text and
continue
button

Text centred in the middle-
top of the page, large enough
to easily read. Button should
be lower than the middle
vertically.

Screenshot 10
(Text is too low
and small)

I moved the text up
and increased the
font size.

9a(ii) Same as
above

Same as above Check video link
(all correct)

None.

9b(i) Test the
transition
from the
story to the
chess game

When the user finishes the
chapter, they should press
continue which should put
them in a chess game.

Check video link
(all correct)

None.

9c(i) Test the
actual game
(for the
first
chapter)

The first battle should be
very easy to beat, which the
engine throwing its pieces
towards the player aimlessly.

Check video
link. (The engine
played too well,
so I had to stop
the test here to
see what went
wrong)

Increased depth
from 1 to 2. This
meant that the
simplify position
evaluation is done
with a depth of 3, so
more moves are
missed out.

9c(ii) Same as
above

Same as above Check video link
(all worked fine)

None.

9d(i) Test speech
text.

Speech should be prefixed
with the coloured speaker
name

Check video link
(all worked fine)

None.

9e(i) Full test of
the
adventure.

All speech should be
displayed, and all games
played suitably easy for a
low skilled player.

Check video link
(all worked fine,
more difficulty
testing will be in
Test 10)

how some opponents
played, but I wait
for my testers in
Test 10 before I
change anything.

9f(i) Test the
game round
up feature.
Lose a
game and
recheck.

Get the win-ratio of 100%
for all sections. Then lose the
game, the number of games
played, and games lost
increases by one, the
aggressive win rate changes
to 75%, and the tactically
strong win rate to 75%.

Check video link
(all worked fine)

None.

9g(i) Test the
download
for the
round up.

The same round up is saved
as a .png file
device.

Check video link
(all worked fine)

None.

Finley Cooper 7588 50639

50

Test 10 - End-to-End testing
Tests of the entire system from signup to finishing the account. All the tests here are tests repeated
from earlier tests,
miscellaneous -to-end testing

intuitive the app is to use, which is important, as my expected users are on the younger side, so might
need more assistance navigating the platform that I thought. If user requests or requires a major
change to fix a problem, I will include this in my evaluation instead, as I am nearing the end of my
project.

Test 10.1 -My End-to-End Test Action Log

Full video link in Testing Video Links

Action Timestamp Errors, unexpected
behaviour, or user
confusion

Fixes Required

Redirected from root path to the
logged in path.

0:00 None. None.

Clicked link to signup 0:03 None. None.

Entered valid email address 0:09 None. None.

Entered invalid name 0:14 None. None.

Entered valid name 0:16 None. None.

Entered invalid email 0:20 None. None.

Entered valid password 0:28 None. None.

Entered invalid confirm password 0:32 None. None.

Entered valid confirm password 0:33 None. None.

Completed sign up 0:35 None. None.

Logged in with valid credentials 0:45 None. None.

Started custom game as white 1:10 None. None.

Played custom game to a
stalemate.

3:25 None. None.

Viewed game history 3:37 Page incorrected

Stalemate . winner is 0 (no winner).
Reviewed while logged in. 3:46 None. None.

Created shareable link 4:27 None. None.

Reviewed from shareable link in
private window (not logged in)

4:30 None. None.

Reviewed from non-shareable
link in private window (not
logged in)

5:02 The API rejected
the request as
designed, but the
user t notified

access the game.

Redirected users to the
login page if the server
sent 404 (game not
found), 401
(unauthorised), or 403
(forbidden).

Started the adventure mode 5:20 None. None.

in dialogue.
6:35 None. None.

Left adventure mode mid-story to 6:40 None. None.

Finley Cooper 7588 50639

51

Adventure mode continues from
last saved chapter, with the new

6:55 None. None.

Finish adventure mode and
viewed statistics sheet.

15:08 None. None.

Download and view locally
statistics sheet.

15:15 None. None.

Viewed game history 15:31 Game result

Reviewed most recent game 15:34 The next move
button was
positioned
incorrectly and way
too big.

Changed conflicting CSS
class names of the board
container with the
Adventure board
container.

Reviewed next most recent game 15:50 Same as above Same as above.

Deleted account 16:00 None. None.

Logged in with server-generated
admin credentials.

16:07 None. None.

Reviewed empty game history 16:12 None. None.

Navigated to /api/users/all/ 16:22 I mistyped the route
while testing.
Ignore the NGINX
error.

None.

Navigated to /api/users/all to
check the user was deleted.

16:53 None. None.

Test 10.2 Test User 3 End-to-End Test Action Log

Full video link in Testing Video Links

This is also a test of the project being hosted on Google Cloud, as before tests were conducted either
locally or through static file hosting (where the API was not included).

Action Timesta
mp

Errors, unexpected behaviour, or user
confusion

Fixes Required

User navigates to the
URL given and is
redirected

0:01 None. None.

Submits an email and
password in the login
form

0:19 The system acted as expected, but the
test user thought the login form was the

which I talk about more in the
evaluation section.

None.

User navigates to the
sign-up page

0:25 None. None.

User enters an email
address using Edge
autofill

0:32 Microsoft Edge auto-filled an email
which the user inputted as the login
credentials; however, Edge also filled
the email address for the display name
box.

Added an

attribute to the
name input.

User enters the unsecure 0:37 None. None.

Finley Cooper 7588 50639

52

User enters the confirm
password input
incorrectly

0:55 None. None.

User changes display
name

1:09 None. None.

User enters matching
password

1:16 None. None.

User signs up 1:18 None. None.

User logs in 1:28 None. None.

1:41 None. None.

User clicks on custom
game

1:51 None. None.

User creates an aggressive
engine, with high blind
spots

2:10 None. None.

User starts the game 2:11 The board was too zoomed in, which
resulted in the board being only partially
visible. On my objectives, I put aside
making the website responsive, so this is
outside of the scope of the project.

None.

User plays the game 2:12-
5:26

The engine plays about expected, with a
good amount of aggressiveness, and
played down to the lower skill level
tester well.

None.

The user wins the game
by checkmate

5:26 None. None.

The user plays the first
level of the
mode.

5:38 The test user played much worse than I
anticipated here
that they were still able to beat the

None.

The user clicks on game
history page.

9:15 None. None.

The user reviews the
game in the adventure
mode.

9:22 Same error with the incorrectly
positioned button, as I was accidently
running an older version of the code.

for being back a move.

None (apart
from updating
the project
version in the
cloud).

Post-test Interview:

Test User 3

-

Test User 3 Well, I believe that with sliders and settings it has the potential to act human like, but

play human-

Test User 3

Finley Cooper 7588 50639

53

Screenshots

Screenshot 1:

Screenshot 2:

Screenshot 3:

Screenshot 4:

Finley Cooper 7588 50639

54

Screenshot 5:

Screenshot 6:

Finley Cooper 7588 50639

55

Screenshot 7:

Screenshot 8:

Screenshot 9:

Finley Cooper 7588 50639

56

Screenshot 10:

Finley Cooper 7588 50639

57

Testing video links
Manually Change the quality of the YouTube video player if the text is not visible.

Link to playlist containing all videos.

Shortened URL: https://tinyurl.com/finleynea

Direct URL to playlist (if shortened URL does not work)
https://www.youtube.com/playlist?list=PLIbnTcOPbWiZJrxLaCyaOol_HuE9aEGd_

URLs to individual video links

Test Number Link
Test 4c(i) https://youtu.be/GoRMgk2nbGQ
Test 4c(ii) https://youtu.be/_vnRzjOp8XM
Test 4d(i) https://youtu.be/fDdmlVYvz_4 Also see Transcription 1
Test 6 https://youtu.be/4OYXiSrRNRI
Test 7 https://youtu.be/NFeElG-1z7M
Test 8b to 8h https://youtu.be/vzhvRlnU7AE
Test 9a(i) to 9c(i) https://youtu.be/wj_GGvfbb50
Test 9c(ii) to 9g(i) https://youtu.be/Sn6G_7zFo74
Test 10.1 https://youtu.be/xXpvwnKMawg
Test 10.2 https://youtu.be/zmDbIbeJUz0

Transcriptions
Important comments are bolded.

Transcription 1

[Me]: Right, go on.
[Me]: You can talk about it, talk about the whole system as a whole.
[Test User 2]: Ok, alright, alright, alright.

[Me]: It might not be bad thing; this is it on the high settings, so.
[Test User 2]: Oh, this is the high settings?
[Me]: Yeah, you should be expecting a hard game.
[Test User 2]: See that was intentional. (sarcasm)
[But that was
intentional.
[Me]: Ok
[Test User 2]: But not ready for this ah see defence. It knows. The engine knows.
[Test User 2]: Just do some pushing. -
[Test User 2]: Little bit slow
[Me]: Ok, ok.
[Test User 2]: That was a terrible move (talking about his own move)
[Test User 2]: No that was intentional (sarcasm). Right here me out, bring- ah bring it up. But then what I do
then, hmph.
[Test User 2]: Strategies, strategies, , whoops.

with the queen .
[Me]: [The game]
[Test User 2]: See it works out, in the end it will work out in my favour. try- that.
[Both]: Oooh (The engine played a good move that neither of us saw)
[Me]: It got you there.

Finley Cooper 7588 50639

58

finishes the job.
, there we go. Bang.

[Me]: I think it got you.
See?

[Me]: I wanna see if it actually checkmates you and
the problem I had on the test before.

[Test User 2]: What we are gonna do, however, is move this guy up. Then, alright, move this guy up, then keep
pushing.
[Me]: Uh-oh
[Test User 2]: Ok? That quite interesting.
[

[Test User 2 tries unsuccessfully to break the board by moving the king outside of the container]
[Me]: So what you do say about it, what do you say about the system?
[Test User 2]:
[Me]: Tiny bit slow, ok. Is it slow because it freezes when you [make a move]?

good.
[Me]: Well,

Finley Cooper 7588 50639

59

4 Evaluation

Changes Due to Feedback

Throughout the project I have had other people test my project and give me feedback to improve the
project. For my first test of just the engine with Test User 2, I added an indicator of where the user
and engine had just moved, so the positions were more easily understood. Test User 2 also
complained that the engine would freeze the board while it was thinking,
over the board until the engine had finished calculating. To fix this, I added a delay on the computer
calculation function, so the rendering method on the board React component had processor time to be
computed first.

From Test User 3, I only made some minor changes to the actual code, such as preventing the name
input from being autocompleted into, and I added some navigational features, such configuring the
app to push the routes to the browser history so they can be easily traversed by the user.

My interviewee also had some comments and first introduced me to the repetition problem while he
was testing the project outside of our interview, which lead me to introduce the past board stack and
the hashing function to encourage the engine to stop repeating positions, which worked as I no longer
had any more problems in the subsequent tests.

Project Objective Evaluation

These are the evaluation of the objectives discussed in the analysis section, how I think I achieved
them, and how my testers observed the project. (Look back at the Analysis section for specificity for
each objective)

1. Create a signup and login system.
2. Create a customisable chess engine.
3. Create an adventure mode using the engine customisations.
4. Create a REST API between the database and the website.

Objective 1 The signup and login system

The signup and login system were complete, and all requirements for the first objective
were met fully. The assurance of the complexity of the password was assured in Test 6, and the
server-side protections were confirmed in Test 5 and 7.

Beyond the objectives, in the end-to-end test with Test User 3 the user thought that the first form they
were redirected to be the sign-up form, where in fact it was the login form. If I was going to redo the
project, I could add some browser side cookie, which is stored when the user first navigates to the
website. The absence of this cookie would cause the user to be redirected to the sign-up page instead
of the login page.

Objective 2 The engine

The resources used by the engine on the browser have not caused any problems since I introduced the
bitboards for storing the pieces. Before that, I would have the browser crashing due to high memory
usage, and long CPU time would cause the engine to freeze when a move was played. Now, through

ent (with a default depth of 2),
and no issues from my testers since the Test 4 with Test User 3.

Finley Cooper 7588 50639

60

I was very pleased with the ability of the engine to play down to its opponents, being able to lose to
beginner chess players, and being able to beat more experienced chess players like me. The
customisation settings were mostly a success, with the blind spots, aggressiveness, and positional play
settings were well noticeable and changed how the games were played, however the piece exchanging

clear and none
of my testers had any problems with it while adjusting the engine.

The introduction of the blind spots made the engine play down to opponents very well, however this
did lead to a loss of the human-like playstyle of the engine which was picked up by Test User 3.

Objective 3 The adventure mode

Testing the adventure mode was hard, as it would take near an hour for a beginner chess player to
fully complete the adventure mode, however I had no problems with my own end-to-end test and my
one game with Test User 2 worked fully at an expected skill level. The display of the opponent and

worked correctly, and the finalised round-
interesting information. The file can also be downloaded fully. This was all shown in Test 9. For the
review functionality, I had no problems, but Test User 2 gave some comments about more settings for
reviewing, including being able to move forward and backwards in the game and possibly play new
moves on the board to improve on how they played, however this was out of the scope of the
objectives. The shareable functionality also worked well, which was shown in my end-to-end test and
Test 8.

Objective 4 Server API

The relevant API resources are accessible, however there are still some minor problems for showing
the user the errors made by the request. Most times when an error is occurred, the user is just
redirected to the login page (as most errors are due to authentication errors), however
work for a server-side error. -side errors in my testing, but of course

activity, only when requests are made directly to the API, which should never happen.

Possible Improvements

Here are the main improvements

One of the missing components from my system is that there is no draw by repetition. This
effects the custom game section of the project but a major part of the system,
the adventure mode. The adventure mode is not affected, as the player only moves on to the
next stage once they win a game, and the engine is coded to evaluate repeated positions much
lower, preventing draws in most cases.

, which was mentioned
by some of my testers, by exclamations of strange moves. Mostly this was caused by poor
performance, resulting in lower depth settings, but adding some neural network, trained on
real games would have made the engine play a lot more human like.

One of the largest bottlenecks of my system is the construction of the JavaScript Bigint, which is used
for the square collection class discussed in the design section. To get around this, I would have written
the engine in a language which supports strongly typed unsigned 64-bit integers like Java or C and its
derivatives, and compile the source code into intermediate WebAssembly bytecode, which could be
run directly in the browser.

Finley Cooper 7588 50639

62

5 Code
File Hierarchy Diagram

On the next page is a hierarchy diagram which shows all the files in the project. The lines between the
files and directories represent files within directories not the relationships between files. The files are
colour coded (I will give examples for each colour if the chart is being read in black-and-white). The
dark grey files are config files which are generally irrelevant to the algorithms and programming
structures accessed at A level. - near the top

, and TypeScript
files are coloured in a light blue, for example index.tsx. TypeScript files ending in .tsx, rather than .ts
signifies that the files contains JSX for the GUI structure. Normal JavaScript files are coloured in
yellow, which is only the files knightMove.js and slidingPiecesMoves.js. Solid white files represent
files which are not meant to be read using a text editor for the purpose of the project (database, SVG
files) and I will not be including these files in the write up. Turquoise files such as app.py are files
written in Python and red files such as index.css are CSS files used for the styling of the GUI.

The dotted lines surrounding a group of files represent files stored in the same subdirectory which
have been groups to preserve space in the diagram. Parts of the diagram have been split up to stop the
diagram from becoming too long, with the frontend/src/routes and frontend/src/engine directories
being shown in separate diagrams below. Each file will be given a description, and the contents of the
file will be shown.

Files used solely for the development process, like code editor settings, .gitignore, .dockerignore files
have been omitted along with font files and SVG files.

Finley Cooper 7588 50639

64

File Descriptions

docker-compose.yaml Config file which configures the Docker container.

frontend A folder containing the files which are used to create the chess engine and GUI.

frontend/tsconfig.json Config file which determine how TypeScript is compiled.

frontend/yarn.lock Config file which keeps package versions constant.

frontend/vite.config.ts Config files which determines how the Vite project will be built.

frontend/package.json Config file which says which packages to use.

frontend/Dockerfile Config file which determines how the frontend image will be built.

frontend/index.html Almost fully empty HTML file which the React app is loaded into.

frontend/deployment/nginx.default.conf Sets up how NGINX will handle web requests.

frontend/public Empty directory which contains the built React app.

frontend/src A folder containing the actual React app.

frontend/dist An empty folder that will contain the output from the Vite building process.

frontend/src/main.tsx The file where the React app is initialised and built from.

frontend/src/App.tsx The file that imports the routes in the routes folder.

frontend/src/App.css Stylesheet for styles used in the entire app.

frontend/src/index.css Stylesheet for styles used in the entire website.

frontend/src/assets/VarelaRound-Regular.ttf Font used on the website.

frontend/src/vite-env.d.ts Adds support for TypeScript types for SVGs.

frontend/src/LoggedInContext.tsx Creates the React context for the user API request.

frontend/src/LoggedInContextProvider.tsx Makes an API request for the user info on page load.

frontend/src/engine Folder which contains all the files for the actual chess engine program.

frontend/src/engine/Testing/perftTesting.ts File which contains an algorithm for running automatic
PERFT tests.

frontend/src/engine/index.ts Dummy file to indicate that the folder should be treated as a package.

frontend/src/engine/constants.ts File containing constants used in the engine.

frontend/src/engine/Search.ts File containing the minimax algorithm used to find the best move.

frontend/src/engine/SquareCollection.ts File containing the SquareCollection class.

frontend/src/engine/Engine.ts File containing the Engine class.

frontend/src/engine/Board.ts File containing the Board class.

frontend/src/engine/Move.ts File containing the Move class.

frontend/src/engine/Evaluation.ts File containing algorithms to evaluate a position in a leaf node
when searching for the best move.

frontend/src/engine/Pieces Folder containing

Finley Cooper 7588 50639

65

frontend/src/engine/Pieces/index.ts File which chooses the Piece class to construct.

frontend/src/engine/Pieces/<Chess Piece>.ts A group of files where each file contains a class for
initialising the piece given in the file name.

frontend/src/engine/Pieces/Empty.ts A class generating a piece which represents an empty square.

frontend/src/engine/Pieces/BasePiece.ts A file containing the abstract base class for each piece.

frontend/src/engine/Pieces/utils Folder for algorithms used for generating moves in the piece
classes.

frontend/src/engine/Pieces/utils/index.ts Contains algorithms for generating moves for sliding
pieces.

frontend/src/engine/Pieces/utils/precalculations Folder containing files which are used for
calculations done before the project is run.

frontend/src/engine/Pieces/utils/precalculations/knightMoves.js File which generates the knight
attacks for each square.

frontend/src/engine/Pieces/utils/precalculations/slidingPiecesMoves.js File which generates the
sliding piece attacks for each square.

frontend/src/engine/Pieces/utils/precalculations/results.ts File containing the results from the JS
files for use in the move generation algorithms.

frontend/src/components Folder containing React classes used across multiple routes.

frontend/src/components/BoardElement Folder containing files for creating the board GUI.

frontend/src/components/BoardElement/constants.tsx File containing contsants for use in the
rendering of the board given by the engine.

frontend/src/components/BoardElement/pieces.svg File containing SVGs for each piece.

frontend/src/components/BoardElement/index.css File containing styles for creating the board.

frontend/src/components/BoardElement/Piece.tsx React component for each piece.

frontend/src/components/BoardElement/index.ts Component for the board and rendering process.

frontend/src/components/TextInput Folder containing files for the text input component.

frontend/src/components/TextInput/index.ts File containing the text input component.

frontend/src/components/TextInput/index.css File containing the text input component styles.

frontend/src/routes Folder containing components for each route.

frontend/src/routes/index.tsx Folder which imports and reexports the routes for App.tsx.

frontend/src/routes/LoggedInRoute.tsx Folder which handles redirection when not logged in.

frontend/src/routes/(Adventure/Authenication/Custom/Home/Review/Settings/Test/History)
Folders which containing the component for each route discussed in the React Component chart
earlier.

frontend/src/routes/<route name>/index.js File for each route which contains the constructor for
each route page.

Finley Cooper 7588 50639

66

frontend/src/routes/<route name>/index.css File which contains the styles for each route.

frontend/src/routes/History/Game.tsx File which contains a component for each element in the
history game list.

frontend/src/routes/Test/positions.ts File which contains positions to be PERFT tested.

frontend/src/routes/Home/icons.svg Images in the home route which are just for looking pretty.

frontend/src/routes/Custom/CustomisationSlider.tsx Component for each slider on the Custom
route.

frontend/src/routes/Login/index.tsx File for the rendering and checks for the login form.

frontend/src/routes/Signup/index.tsx File for the rendering and checks for the signup form.

frontend/src/routes/Adventure/AdventureResults Folder containing code for generating the
component which shows the user statistic sheet when the adventure is completed.

backend Folder containing the Python Flask app API.

backend/Dockerfile Config file for creating the backend image.

backend/config.py Config file for flask settings, app variables, and keys

backend/app.py Main file for initialising the app and creating the API routes.

backend/requirements.txt File for declaring which packages should be installed.

backend/decorators.py File containing the function decorator for the authentication process.

backend/database Folder containing code related to the database.

backend/database/__init__.py File which contains a database class which is acts as an interface for
making SQL queries indirectly in app.py on the database.

backend/database/table_classes.py Declares classes used in the __init__ file for passing back to
app.py to structure data coming from the database more rigorously.

backend/database/adventure_script.py Exports the story script for inserting into the database.

backend/database/create_tables.py Creates the SQL tables, the relations between them and inserts
the adventure script into the campaign levels table.

backend/database/data/data.db SQLite3 Database file

backend/crypto_auth Folder containing algorithms for password hashing and message signing.

backend/crypto_auth/elliptic_curve.py File which defines the elliptic curve class and methods for
signing a byte message.

backend/crypto_auth/__init__.py File which contains functions for signing a Python dictionary
using the functions on the elliptic curve class and uses the SHA256 algorithm to create password
hashes and salts.

Finley Cooper 7588 50639

67

Cover Sheet

The raw code for each of these files is in the appendix of this project. The order of the files is
(roughly) the order the of file description for ease of navigation.

Files and directories of note:

- backend/crypto_auth/elliptic_curve.py | Page 158 Page 161
This file contains all the cryptography related algorithms in a class which I have
discussed in pseudocode and flowcharts in the design section extensively.
Complex mathematical operations (group theory and elliptic curves)

- frontend/src/engine/Board.ts | Page 82 Page 89
This file contains the central Board class for the engine and contains many of the
algorithms and data structures discussed.
Complex OOP model, aggregation, composition, hashing, stacks, bitfields, dynamic
object generation.

- Files in frontend/src/engine/Pieces | Page 92 Page 101
This set of files contains definitions for the OOP model for each chess piece.
Abstract base class, inheritance, polymorphism.

- frontend/src/engine/Search.ts | Page 76 Page 78
This file contains the main algorithm of the project, the alpha-beta minimax
algorithm.
Complex-user defined algorithm, insertion sort, recursive algorithms.

- backend/app.py | Page 144 Page 149
Contains functions for the API.
Complex client-server model, server-side scripting using request and response
objects, parameterised Web service APIs and parsing JSON.

- frontend/src/engine/Engine.ts | Page 79 Page 82
Contains a class which is the interface between the web app and the engine, also
contains algorithms pertaining to the engine customisation.
Interfaces, complex mathematical operations

- backend/decorators.py | Page 149 Page 150
Handles logic for the token scopes and authentication.
Complex client-server model

- backend/database | Page 150 Page 159
Contains the SQL queries talked about earlier and contains a class-based interface
between app.py and the database.
Cross-table parameterised SQL, complex data model in database with several
interlinked tables

Overall, most of the complexity of the project is contained in the frontend/src/engine folder, and all
other files are supporting code for the GUI, the server, and more bells and whistles which
differentiates my project from a standard chess engine.

Finley Cooper 7588 50639

68

Filetypes

Files ending in .ts are standard TypeScript files.
Files ending in .tsx are TypeScript files which may use or handle JSX.
Files ending in .py are Python files
Files ending in .js are JavaScript files
Files ending in .svg are vector images
Files ending in .css are stylesheets for the GUI
Files ending in .txt, .json, .yaml, .d.ts, .config.ts, .conf, or Dockerfile are config files

Attributions and clarity

As with all programming projects, some of the inspiration for techniques used in the engine were
taken from existing sources (Chess Programming Wiki). However, all code below is my own unless
commented otherwise. The complex mathematical equations used for the elliptic curve algorithm are
not my own to ensure compliance with the FIPS 186-4 standard, however all implementation of the
methods are my own. The email regex used is not my own, which is clearly commented in the code as
the RFC 822 Compliant email regex by Cal Handerson. Some of the GUI work (the text inputs) and
Docker and NGINX configuration were borrowed from a previous project I had done, although it is
all still my own code.

Finley Cooper 7588 50639

69

Appendix
docker-compose.yaml

frontend/tsconfig.json

frontend/vite.config.ts

Finley Cooper 7588 50639

70

frontend/package.json

frontend/Dockerfile

frontend/index.html

Finley Cooper 7588 50639

71

frontend/development/nginx.default.conf

frontend/src/main.tsx

frontend/src/App.tsx

Finley Cooper 7588 50639

72

frontend/src/App.css

Finley Cooper 7588 50639

73

frontend/src/vite-env.d.ts

frontend/src/LoggedInContext.tsx

frontend/src/LoggedInContextProvider.tsx

Finley Cooper 7588 50639

74

frontend/src/engine/Testing/perftTesting.ts

frontend/src/engine/index.ts

frontend/src/engine/constants.ts

Finley Cooper 7588 50639

75

Finley Cooper 7588 50639

76

frontend/src/engine/Search.ts

Finley Cooper 7588 50639

77

Finley Cooper 7588 50639

78

frontend/src/engine/SquareCollection.ts

Finley Cooper 7588 50639

79

frontend/src/engine/Engine.ts

Finley Cooper 7588 50639

80

Finley Cooper 7588 50639

81

Finley Cooper 7588 50639

82

frontend/src/engine/Board.ts

Finley Cooper 7588 50639

83

Finley Cooper 7588 50639

84

Finley Cooper 7588 50639

85

Finley Cooper 7588 50639

86

Finley Cooper 7588 50639

87

Finley Cooper 7588 50639

88

Finley Cooper 7588 50639

89

frontend/src/engine/Move.ts

Finley Cooper 7588 50639

90

Finley Cooper 7588 50639

91

frontend/src/engine/Evaluation.ts

Finley Cooper 7588 50639

92

frontend/src/engine/Pieces/index.ts

Finley Cooper 7588 50639

93

frontend/src/engine/Pieces/Rook.ts

frontend/src/engine/Pieces/Queen.ts

Finley Cooper 7588 50639

94

frontend/src/engine/Pieces/Pawn.ts

Finley Cooper 7588 50639

95

frontend/src/engine/Pieces/Knight.ts

Finley Cooper 7588 50639

96

frontend/src/engine/Pieces/King.ts

Finley Cooper 7588 50639

97

Finley Cooper 7588 50639

98

frontend/src/engine/Pieces/Bishop.ts

frontend/src/engine/Pieces/Empty.ts

frontend/src/engine/Pieces/BasePiece.ts

Finley Cooper 7588 50639

99

frontend/src/engine/Pieces/utils/index.ts

Finley Cooper 7588 50639

100

frontend/src/engine/Pieces/utils/precalculations/knightMoves.js

Finley Cooper 7588 50639

101

frontend/src/engine/Pieces/utils/precalculations/slidingPiecesMoves.js

frontend/src/engine/Pieces/utils/precalculations/results.ts

Finley Cooper 7588 50639

102

frontend/src/components/BoardElement/constants.tsx

frontend/src/components/BoardElement/pieces.svg

[Intentionally Omitted]

frontend/src/components/BoardElement/index.css

Finley Cooper 7588 50639

103

frontend/src/components/Piece.ts

