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1  Abstract 

The most powerful tool given to a government policy maker in the 

face of a pandemic is modelling. The modelling of an epidemic allows 

policy makers to predict the effectiveness of protective interventions without 

risk. This project focuses on non-pharmaceutical interventions (NPIs) in 

England and Sweden in the COVID-19 epidemic from March to December 

in 2020, broken down into these key sections: 

• The production of epidemic models, including technical methods used 

and epidemic data to characterise the disease. 

• The long-term strategies and subsequent policies chosen by England 

and Sweden to limit transmission. 

• How did the models used by these two countries effect their strategy? 

• Limitations of these models and a comparison with my own model. 

The conclusion of my research is that epidemic modelling must be done 

throughout an epidemic, not just at the start, especially when stricter 

responses are enforced. 

In my research I found a lack of precise data for important parameters for 

modelling COVID-19, especially data from early 2020. This led to 

inaccuracies in the data produced by modelling teams in both countries, 

which had a continued influence on policy implementation as there was 

little modelling of NPIs from the countries in the later stages of 2020. I saw 

how the policies implemented in England became much less thoughtful 

which hurt the UK’s stricter strategy more than Sweden’s strategy. 
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2  Introduction 

Mathematical models of infectious diseases are a projection of how 

an infectious disease will progress over time, given a set of parameters. 

Policy makers can change these parameters to reproduce the effect of 

interventions which influences the spread of the disease, and the result 

from the model reflects which interventions might be the most successful. 

 

Modelling diseases is a technique that has been used to influence 

public health policy since 1760, where Bernoulli analysed the influence 

of vaccination against smallpox (Bernoulli and Blower, 2004). The 

growth of compartmental models, pioneered by Ross in 1916, are models 

which is where the population is split into several classes. Ross’ first 

models contained two classes, the unaffected, and the infected. Ross used 

differential equations to calculate the growth and decrease between each 

group over time, to graph the disease’s progress (Ross and Hudson, 1917, 

p. 231).  

 

Most of the first compartmental models were deterministic, which 

require massive populations. Realistically, this is not the case, so 

stochastic models are used instead, where randomness is introduced as 

people move between classes to calculate the probability of the progress 

of the epidemic (Bartlett, 1957). 

 

Since then, models have been a crucial tool for policy makers, who 

now have access to computers, which allows models to become more 

complex and thus require more data to fit these new parameters (De 

Angelis et al., 2015). However even with all these parameters, many 

models solely rely on properties of the disease: they are not looking at 

how age groups interact differently, or public policy issues which can 

vary drastically country to country (Lewis and Al Mannai, 2021). 
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3  Making a Model 
 

Making a model requires both data about the epidemic and a 

method of using this data to make predictions. To gain a better 

understanding of the methods and data collected by model makers in 

England and Sweden, I decided to research this and create my own 

model. Since the initial outbreak of COVID-19, more research has been 

published, so my model might be able to draw some conclusions missed 

by policy makers. 

 

3.1 Data needed to model COVID-19 
 

To model an infectious disease, data is needed that characterises 

the disease. This data must be accurate and reliable. Data collected in 

China, however, has been questioned by the international community 

(Campbell and Gunia, 2020), giving model creators little information to 

build a model with. High uncertainty levels also make stochastic 

modelling more appealing, as different probability distributions can be 

analysed within the range of values as was done by Ferguson et al. 

(2020a). 

  

 In An Introduction to Infectious Disease Modelling, Vynnycky and 

White (2010, p. 14) say that ‘key features’ of the disease must be 

identified to develop a model. The main characteristics they identify are 

the latent period (time between infection and onset of infectiousness), the 

infection duration, the basic reproduction number (R0) which is a measure 

of how many people will be infected by one infected individual in a fully 

susceptible population, and how the infection affects age groups 

differently. 

  

 Most of these parameters can be measured through case tracing and 

studies of the infected. However, the percentage of asymptomatic 

infections is a key feature omitted by Vynnycky and White (Byrne et al., 

2020), especially when considering policies, as asymptomatic individuals 

will not know if they are infected, and therefore will not abide by 

policies. When modelling, we can think of asymptomatic individuals as 
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splitting the ‘Infected’ class into the asymptomatic individuals and 

symptomatic individuals, as asymptomatic individuals recover from 

COVID-19 quicker, so will move to the ‘Removed’ class at a faster rate 

(Byrne et al., 2020). 

 

 R0 is harder to measure, as it must be estimated through modelling 

or calculation instead of pure measurement. This is shown in the range 

for R0 in studies, which range from 0.4 to 12.58 (Dhungel et al., 2022). In 

early 2020, this was a larger problem, as the number of people infected 

with SARS-CoV-2 was so low that conclusive results were rare. Another 

reason for the large ranges in R0 is shown in a meta-analysis of R0, which 

found a disparity between the results of R0 calculated using different 

methods (Liu et al., 2020), with one giving an average of 4.2 and another 

giving 2.44. This is an extremely significant difference. Using the fact 

epidemic will stop once the proportion of the population, P, has 

antibodies to prevent reinfection is given by, 

 

𝑃 = 1 − 
1

𝑅0
 

 

With R0 = 4.2, P ≈ 0.762 = 76.2% and with R0 = 2.44, P ≈ 0.590 = 59.0% 

 This difference between immunising half the population against 

immunising three quarters of the population is an immense difference in 

policy and reflects how important it is that data used in disease modelling 

must be accurate.  
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Table 1. Significant published estimates of data related to COVID-19. 

Study 

 

Date 

 

R0 results 

 

Other notable results 

 

Notes 

 
Locatelli, Trächsel 

and Rousson (2021) 

17/03/21 2.2 (95% CI: 

1.9-2.6) 

 Gives the value for R0 (2.2) as 

‘significantly lower’ than R0 

in China 

Li et al. (2020) 26/03/20 2.2 (95% CI, 

1.4-3.9) 

Mean incubation period of 5.2 

days (95% CI: 4.1-7.0) 

Used by Imperial College in 

Report 9. 

Dhungel et al. 

(2022) 

15/08/22 2.66 (95% CI, 

2.41-2.94) 

 Does not agree that the 

Western Europe value for R0 

is ‘significantly lower’ than 

R0 in China 

Ma et al. (2021) 14/12/21 . 40.50% asymptomatic among 

the confirmed population with 

COVID 

 

Sayampanathan et 

al. (2021) 

09/01/21  Symptomatic people had a 3.85 

times higher incidence rate ratio 

 

Xin et al. (2021a) 12/06/21  Incubation period gamma 

distribution,  

Rate=0.61    P95=13.1 

Mean=6.3 

 

 

In Table 1, the results for R0 vary widely study to study, with much 

wider confidence intervals for earlier studies, however all the studies 

reviewed agree that R0 is somewhere between 2 and 3. However many of 

the studies use data from outside of Western Europe. This EPQ is focused 

on the value for R0 in Western Europe, as it will be representative for 

England and Sweden which we assume have the same R0.  

The studies in the table, are conflicted if China and Western 

Europe have similar R0 values. Locatelli, Trächsel and Rousson (2021) 

gives an estimated value R0 in China of 3.32, compared to 2.2 for 

Western Europe. This is attributed to changes “on the social habits of a 

given population”, but notes that published studies for R0 in Europe for 

the time were rare, and difficulties existed with epidemiological data. 

Dhungel et al. (2022) gives a higher value for R0 in the UK, 3.43, 

although the confidence intervals are exceptionally large (1.99-5.91). 

As it cannot be confirmed that disease data can be transferred 

between countries, it is important that studies for calculating R0 are done 

in the environment where the model will influence governmental policy, 

as even in 2022, Dhungel et al. only found 4 R0 estimation studies for the 

UK suitable for meta-analysis, resulting in wide confidence intervals. 
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Poor data for R0 transfers into uncertainty in the model outcomes, hurting 

policy implementations. 

 

3.2 Model structure 

Although some newer modelling methods have shown recent 

progress, compartmental models are the gold standard (Keeling and 

Eames, 2005). Much has changed since Ross’ first compartmental 

models, where he noted that more classes must be considered to 

“represent the facts accurately” (Ross and Hudson, 1917, p. 239). 

However, we must choose what classes to use in the model and how the 

population can move between classes. This varies disease to disease, but 

for COVID-19, I will argue why the SEIR (Susceptible-Exposed-

Infectious-Removed) model is the best. 

The SIR model (Susceptible-Infectious-Recovered/Removed) is the 

base model for modelling infections, where once the infected individual 

has recovered, they are ‘removed’ from the system and cannot be 

reinfected (Vynnycky and White, 2010, p. 15). However, this model 

doesn’t consider the period where the individual is ‘exposed’ to the 

infection, where they have the pathogen in their body, but the disease has 

not become prevalent enough to cause symptoms. This is the incubation 

period. The latent period is the period from infection to infectivity. The 

time between the latent period and the incubation period is important, as 

the individual will be unaware if they are infected, however are still 

transmitting the disease. A long incubation period will slow the spread of 

the disease. 

Xin et al. (2021a) found a significant incubation period modelled 

with a Gamma distribution, mean 6.3 days and a rate of 0.61. As the pre-

infectivity period is significant, our compartmental model should be 

extended to the SEIR model, where the host cannot transmit the disease 

in the exposed period. 

Movement from the Removed class to the Susceptible class could 

also be considered, however paper from Stegger, et al. (2022) concluded 

that reinfection was ‘rare’ amongst the Omicron variant of SARS-CoV-2 



9 
 

so reinfection does not have to be considered, especially for the early 

variants of SARS-CoV-2 in 2020 (Vynnycky and White, 2010, p. 17). 

3.3 Production of my model  

For my own model, I used a modelling technique used by 

3Blue1Brown (2020). The model uses collisions of small circles to 

represent contacts, with a chance of infection if an infectious person 

collides with a susceptible person. I chose this model because the 

visualisation makes debugging the program easier and lets me introduce 

policies easily. This makes the model an Individual-based model, as we 

are tracking the state of each individual and each infection is tracked and 

determined separately (Vynnycky and White, 2010, p. 150). This gives 

more control over the model, as we can change the infection chance in 

various locations.  

Before introducing a disease, I had to create the population and 

town to infect. The town was created using UK census data, which may 

cause bias towards England over Sweden, however the difference 

shouldn’t be massive, as they are both similar Western European 

countries. I fit the household composition (Appendix 1) to the ages of the 

population (Appendix 2) to create the population and housing. I gave out 

jobs using government job data (Appendix 3) and gave out schedules for 

people to go to events, such as the theatre, shops, and other recreational 

activities, which would be what policies will mainly act on. 

To introduce COVID-19, I tagged each person with their class in 

the SEIR model, then infected three individuals at the simulation’s start. 

To fit the model’s R0 to COVID-19, I set up the simulation with everyone 

infected, and I counted the number of ‘would be’ successful infections 

until the entire population had recovered. Then I averaged the number of 

successful infections per person to calculate R0. I ran the simulation with 

different transmission chances, until I found a value that gave a R0 of 2.56 

(95% CI: 2.56-2.69) which was suitable for the simulation. 

To calculate the incubation period for each person, I sampled from 

the gamma distribution described in Table 1 (Xin et al. 2021a). The mean 

time between the latent period and the incubation period is 1.4 days (Xin 

et al. 2021b), so I will take the latent period as a constant 1.4 days less 
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than the sampled incubation period as I cannot take a sample for the 

latent period because the durations are not independent. 

I struggled to find data on the infectious period, for both 

symptomatic and asymptomatic people. A literature review of the 

infectious period by Byrne et al. (2020) found a mean of 13.4 days for the 

post-symptom onset infectious period and a range of 6.5-9.5 days for 

asymptomatic individuals. However, the data is limited, as the author 

notes “substantial variation” in the estimates. Furthermore, my model 

assumes infectiousness remains constant as the infected person recovers, 

so I chose a post-symptom onset infectious period of 10 days, which 

gives 11.4 days for the entire infectious period. The figure shared by 

Byrne et al. (2020) for the duration of the infectious period for 

asymptomatic infections does not agree on a value at all. I will use 6 days 

as an estimate. 

Many studies disagreed on the percentage of the population 

infected who were asymptomatic, as very early figures only gave a single 

child being asymptomatic in the first 425 cases of COVID-19 in Wuhan 

(Li et al. 2020), but a meta-analysis on 95 studies gave a pooled 

percentage of asymptomatic infectious cases of 40.50% (Ma et al. 2021).  

Finally, I decreased the chance of infection from asymptomatic 

individuals, as a seroprevalence study found that symptomatic individuals 

infect at a 3.85 times larger rate (Sayampanathan et al., 2021). 
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Figure 1. Control runs of the model with a population of 162. 

The results show a clear epidemic ‘peak’ in all trials with 

substantial variation between each trial. The general epidemic curve is 

visible in each trial and the total proportion of the population infected is 

not outrageously low or high, so I deemed the model fit to implement 

policies on. 
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4 Exploring Policies Introduced 

With a better understanding of the creation of an effective model, I 

chose to investigate further the policies used by England and Sweden, as 

they had different responses to COVID-19. England’s policy followed a 

‘suppression’ strategy, where policies are introduced to keep the 

reproduction number, below 1, reversing the growth of the epidemic. This 

involves implementing lockdowns and quarantining of households. 

Sweden instead followed the ‘mitigation’ technique, which includes 

advisory policies for social distancing, and contact tracing (Ferguson et 

al. 2020a) . 

Yan et al. (2020) investigates the differences between decentralised 

regimes and centralised regimes in the difference in policy between 

Sweden and France. The Swedish response follows a ‘Nudge’ strategy 

with suggestive and weak policies, and England’s response fits the 

centrally enforced ‘Decree’ strategy, like France and most other Western 

European countries. These strategies lead to different epidemic curves 

and follow similar ideas to the suppression and mitigation strategies in 

Ferguson et al. (2020a). 

 

It should be noted that the success of policies is very hard to 

measure, as other factors such as population density, age distribution, and 

public compliance with policies all contribute to the number of infections 

and deaths in an epidemic, so success cannot be determined with 

certainty. I am more focused in understanding how modelling is used best 

by each country, not the overall success, as that is far beyond the scope of 

this project. 

 

4.1 Policies Introduced by Sweden  

At the beginning of the pandemic there was a lot of controversy 

surrounding the Swedish response, with The Daily Mail saying that 

Sweden was heading for a ‘catastrophe’ (Connolly, 2020). The country 

was accused of trying to achieve ‘herd immunity’, which would have 

caused countless deaths, however I disagree with these initial opinions, as 

the Swedish response gave the population more protection against 

multiple future waves. 
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Many observers were quick to disagree with the Swedish response 

to COVID-19, due to it having one of the lowest COVID-19 response 

stringency indexes (Hale et al. 2020), however the Swedish Foreign 

Minister, declared that the response to the pandemic was a “marathon not 

a sprint”, therefore a less strict policy was chosen to make sure it was 

acceptable for a long period (Heath, 2020). 

I’ve discussed that proportion of the population who need to be 

immune against SARS-CoV-2 to prevent epidemic growth is around 

60%, depending on the value of R0 used. Adding the policies 

implemented by Sweden, which include a ban on unessential travel and 

social distancing advisories (Yan et al. 2020), an infection of 60% of the 

population doesn’t seem like the strategy that Sweden was going for, 

which is what would be needed to achieve herd immunity. 

WHO Director-General Ghebreyesus (2020) remarked that, 

“Never in the history of public health has herd immunity been used 

as a strategy for responding to an outbreak, let alone a pandemic.” 

Instead, the Swedish policy was a policy to not give herd immunity, but 

herd protection, preventing multiple waves. This can be shown as Sweden 

never enforced a ban on education for those under 16 (Halin et al. 2020), 

using the younger generations, who had a much lower fatality rate, to 

safely increase the proportion of the population who are immune. This is 

also supported by a skew in infections towards yonger people (Monod et 

al. 2021). This high level of immunity against COVID-19 in more mobile 

populations, could be an explanation of the unexpectedly low hit rate of 

Omicron in Stockholm County, which fell below modelled predictions of 

a 60% hit rate to 30% (Carlsson and Söderberg-Nauclér, 2022), 

suggesting that this was a result of the herd protection policy. 

 

4.2 Policies Introduced by England 

The policy introduced by the UK was a typical ‘suppression’ 

strategy; the goal was to keep the rate of infections in the population 

decreasing for as long as the virus is circulating in the population until a 

vaccine becomes available (Ferguson et al. 2020a). However, the UK 
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attempted to implement ‘adaptive policy’ where policies are only 

introduced after some metric of the epidemic reaches a threshold, which, 

although very effective in theory, did not result in the UK being protected 

against fatalities and nationwide disruption due to COVID-19, due to the 

confusing implementation of policies. 

The Imperial College COVID-19 Response Team published the 

report Ferguson et al. (2020a), which investigated the impact of 

intervention strategies to reduce COVID-19 mortality, and the results 

directly informed policymaking in the UK. The report concludes with 

social distancing being the most significant policy, followed by home 

isolation of confirmed cases. The report also presented an ‘adaptive 

policy’ where some policies, such as social distancing and school 

closures, are only enforced when hospitals were under stress. It was also 

mentioned in the discussion section that local policies were more efficient 

than national policies. 

The first national lockdown was introduced from March to April 

2020 where all but essential travel was prohibited, enforced with the 

closure of non-essential facilities (Press Association Reporters, 2020). 

This first lockdown was simple and understandable, however from 

April to September, the counties of the UK began to take different 

approaches to exit the lockdown. Scotland announced a zero-COVID 

policy (Sridhar and Chen, 2020), which contrasted the “modest” lifting of 

measures in Wales, and the static situation in England (Roderick, 2020). 

This was made more confusing with the creation of a three tier COVID-

19 alert level, which replaced the piecemeal implementation of more 

stringent measures, the most notable being the lockdown of Leicester. I 

believe that the COVID-19 alert levels were the government’s attempts to 

implement the local policies praised in Ferguson et al. (2020a). However, 

these techniques were shortly replaced with another national lockdown 

throughout November (Kuenssberg and Ghosh, 2020), further adding to 

the confusion. 

Overall, the English policy followed the ‘Decree’ strategy, but 

devolved into confusion throughout 2020 as the transmission of SARS-

CoV-2 progressed through the population, and forced the government to 

be overreactive to changes, reflected in a complex policy structure. 
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5 Usage of Models 
 

Both England and Sweden used models to provide information to 

policy makers, however both countries took varied approaches to 

modelling, with both countries using similar models, but commissioning 

this research in different ways, with the British data being commissioned 

for the government in one large model for the entire of the UK, and even 

some other countries, compared to the decentralised Swedish models 

which come in many shapes and forms, and concentrate on the analysis of 

more specific issues in a specific region of Sweden. 

 

5.1 Usage of Models by Sweden 

The models were found on a Swedish government page, where 

there is a reference to a GitHub profile with the models developed by the 

Public Health Agency of Sweden (Folkhälsomyndigheten, nd). 

From looking at the models, it’s clear that the models focus on 

‘snapshot’ predictions of the disease, given the current progress of the 

disease, without implementing any NPIs in the model. Namely, an 

estimation of the number of infected individuals in four regions of 

Sweden, led by Brouwers (2020), uses an SEIR model, however the 

model is deterministic instead of stochastic, which is less effective for 

policy making, not letting the Swedish government fully assess the risk of 

the epidemic. The model also calculates the future progress of the disease 

from existing incident cases. The data used was collected over a period of 

four months, however the epidemic was still in its initial stages, with 

Stockholm being the only region selected with more than one hundred 

cases a day. The model also predicts a large secondary epidemic wave if 

restrictions were lifted. 

The conclusions of the model are hard to figure out. There is no 

mention in the report of if the predictions are acceptable losses to bear, if 

the government should change their response due to the results, or even if 

the report was seen by policy makers. This was an issue throughout the 

pandemic, with a similar point raised in the long-awaited government-

initiated commission called the Coronakommissionen (Bouder et al. 

2022), which was tasked in evaluating the government actions 
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implemented to limit the spread of SARS-CoV-2. The final report of the 

Coronakommissionen was critical of the Public Health Agency, 

mentioning that the data given to the government was not enough to 

support a change in policy in November 2020. It is also mentioned that 

the communications from the Public Health Agency to the public were 

much too general and left much to interpretation. Although not discussed 

in the report, I think that this is because the Public Health Agency failed 

to investigate sufficiently into the effects of NPIs, and therefore couldn’t 

inform the public with precise instructions. 

One other interesting point raised by the Commission was 

surrounding the snapshots of the epidemic’s progression developed by the 

Public Health Agency. The Commission says the government does not 

have the authority or the ability to judge on scientific controversies, 

which in this case is the type of policy implemented by Sweden, as it is 

task that has been designated to its expert agencies, like the Public Health 

Agency. This is an important fact, as the risk assessments sent to the 

government by the Agency were seen without full context of the 

extremely incomplete and uncertain data we’ve just discussed. It’s 

possible that this caused the government to double-down on the ‘Nudge’ 

strategy, which could have been disastrous due to the high levels of 

uncertainty. 

 

5.2 Usage of Models by England 

Compared to the usage of models used by Sweden, the UK initially 

took a more rigorous approach, however, throughout the progression of 

the epidemic in late 2020, the government starts failing to implement 

recommendations from the Scientific Advisory Group of Emergencies 

(SAGE), which lead to a surge of cases, breaking apart the suppression 

strategy, however this was much more disastrous for the UK over 

Sweden. 

One of the most prominent models for COVID-19, was CovidSim, 

a stochastic individual-based model developed by the Imperial College 

COVID-19 Response Team led by Ferguson (2020b). This model was 

significant as it gave a prediction of 510,000 deaths due to SARS-CoV-2 
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in the UK and caused the UK government to backtrack from a policy 

which focused on building ‘herd immunity’ to a suppression strategy 

(Bostock, 2020). 

As expected, much of the data used to model COVID-19 in 

Ferguson’s first model was incorrect, most significantly being a too high 

infectivity of asymptomatic individuals at 67% of symptomatic 

individuals, whereas the source shown in Table 1, puts the percentage at 

around 26% of symptomatic individuals. As asymptomatic infections 

accounted for a third of cases in the release of CovidSim, we could have 

seen a pessimistic result in Report 9. This data could have been adjusted 

throughout the pandemic, bringing new advice, especially with variants 

of SARS-CoV-2, to allow the safe lifting of some restrictions, where 

policy was seen as strict enough. 

The government was very vocal about following ‘the science’ in 

policy making, however in late September, the government refused to act 

on a proposal from the Scientific Advisory Group of Emergencies 

(SAGE) that recommended an immediate short and tough lockdown 

based on new forecasts from a different model (Tighe, et al 2020). This 

resulted in a second epidemic wave and forced the government to shortly 

reintroduce many of the measures which had been slowly lifted in the 

previous months. 

This was the first time that the government had directly gone 

against Ferguson’s initial research, which clearly set out that measures 

were only to be lifted once immunity had reached a high enough level 

through vaccination (Ferguson et al. 2020a). Lifting policies before 

would only move the country backwards, as the UK had a much lower 

antibody presence than Sweden which introduced minimal protections. 

Therefore, Sweden could afford to ignore the Public Health Agency, as 

the next epidemic wave would be much lighter, as a significant 

proportion of the population were immune to SARS-CoV-2, as seen in 

the low hit rate later in Stockholm (Carlsson and Söderberg-Nauclér, 

2022). This would not work for the UK however, as the suppression 

strategy relies on a vaccine being produced to provide immunity. 

Although SAGE did have a subgroup for modelling, the SPI-M-O, 

their models were limited. They didn’t discuss the influence of any new 
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NPIs, they mostly published ‘short-term-forecasts’ and the reports 

published didn’t link together to provide clear recommendations. SAGE 

has also been criticised for creating an environment for ‘scientific 

groupthink’ (Coker, 2020), due to too much familiarity between 

members. This explains SAGE’s unremarkable conclusions, who might 

have not provided the atmosphere for prominent reports. 

  



19 
 

6 Analysis Against my own Model 
 

 Throughout this project, I’ve discussed how neither the UK nor 

Sweden fully utilised the power of disease modelling in the COVID-19 

pandemic. In this section I will analyse the models discussed in this 

essay, using data created by my model. 

The main factor omitted in all the models I’ve looked at (and my 

own model to an extent) is time. For example, Ferguson’s Report 9 only 

models up to 2021 in Figure 4, where the adaptive policy is shown. This 

is a justifiable choice, as much can change in year, such as a new strain, 

new policy choices, or seasonal changes; however, the government didn’t 

follow up another report from Imperial College about the effects of NPIs 

in the UK. The short-term forecasts by the SPI-M-O were not enough to 

ensure a change in policy would have a positive impact on the country, 

leading to the government removing policies without any scientific 

evidence. This is like Sweden, where the Public Health Agency also 

omitted modelling research into the effects of NPIs. This wasn’t as large 

of a problem in Sweden however, as the ‘herd protection’ policy’s 

success was independent from the length of the epidemic, however in the 

UK, the ‘Decree’ strategy was very dependent on national vaccination to 

allow policy to be removed.  

Another element of time that should have been investigated before 

the pandemic should have been how quickly policy should be 

implemented, in my model, only a 10-day additional delay between the 

first case and policy implementation caused a massive decrease in 

infections, shown in Figure 2. With hindsight, it’s easy to question why 

countries took so long to implement strict policies against COVID-19, 

however at the time it wasn’t clear how the pandemic was going to 

progress. This further proves the importance of modelling to predict how 

dangerous a virus will be before it has fledged into an epidemic. I still 

think that Ferguson should have investigated the effects of implementing 

policy quicker, to get the government to act quicker if a second wave was 

to occur. 
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Figure 2. Results of my model. The number of days is the time between the 

first infection and policy implementation. 

 

 There are several drawbacks to my model, the most significant 

problem is that the population size is too small, at 162, it’s easier for the 

disease the die out in the population than in an entire country. I was only 

able to run 8 trials per scenario which makes the data hard to reproduce or 

make confident conclusions from. Both problems are caused by my 

model being too computationally heavy, due to the Manim engine, which 

is not designed for long animations which my model uses for  

calculations. Even with all of this, it is still clear that implementing a 

policy quickly is much more important than the small additions shown by 

the bottom two graphs having a much lower maximum number of 

infections and a lower total number of infections. This is because the 

social distancing policy and self-isolating policy are the most effective 

policies in my simulation, shown also in Ferguson’s model (Ferguson et 

al. 2020a). 

 

For more details on my model, see Appendix 4 
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7 Conclusion 
 

 The role that epidemic modelling has in the development of 

responses to COVID-19 is an important metric to understand. It has been 

shown that it is vital to utilise models, creating a clear channel of 

communication between epidemiologists and government policy makers, 

without introducing an overreliance on certain produced data, especially 

when that data is flawed due to unseen factors in the introduction of 

policies, or when new epidemic data comes to light. 

 

 In my analysis, I think that both England and Sweden did not fully 

use epidemic modelling throughout the epidemic. The models produced 

by England, most significantly Ferguson’s (2020a), produced clear 

results. However, the UK government didn’t produce any other similarly 

significant material and sometimes disregarded warnings from SAGE’s 

modelling team. The Swedish models did not include long term forecasts, 

and unlike in England the conclusions in the reports were unclear and did 

not give clear advice to the Swedish government, leading the government 

to be more tentative when enacting restrictions. 

 

 Although clearly Sweden was hit less by the pandemic than 

England, this doesn’t say much about how the modelling was used by 

both countries. The Swedish policy was based of little information, which 

could have been disastrous for Sweden if the disease spread faster than 

estimates showed. The British policy was based on an exact modelling 

report and was successful at the start, however both countries decreased 

research into the effect of NPIs in the pandemic, which led to rushed and 

possibly dangerous policy implementation near the end of 2020. This had 

a worse effect on England rather than Sweden however, as the herd 

protection that Sweden had built in their younger population decreased 

the rate of infection. The importance of speed when implementing models 

was also not stressed enough, which was picked up by the 

Coronakommission and myself. 

 Overall, I would say that England made a more effective use of 

epidemic modelling than Sweden, although both countries did not use it 

enough after the start of the epidemic. 
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Appendices 

Appendix 1 – Household census data analysis [Python 3.10.7]  

# File: data_analysis/census/households.py 
# Household characteristics from the 2021 Census 
# Source of data: 
https://www.ons.gov.uk/peoplepopulationandcommunity/householdcharacteristics/homeinternetandsocialmedi
ausage/bulletins/householdandresidentcharacteristicsenglandandwales/census2021 
# Office for National Statistics - Census 2021 
# All data is rounded to the nearest 0.1% 
 
DATA = { 
    "one_person_aged_66_or_over": 12.9, 
    "one_person_other": 17.3, 
    "couple_family_no_children": 16.7, 
    "couple_family_dependent_children": 18.8, 
    "couple_family_all_nondependent_children": 6.4, 
    "lone_parent_dependent_children": 6.9, 
    "lone_parent_all_nondependent_children": 4.2, 
    "other": 16.8, 
} 
 
# We will not consider the "other" category, so we will remove it from the data and scale up the other 
categories so the total is 100% 
# This could lead to a possible error, as the other category is heavily biased towards one-person 
households (students). 
# so our data will overrepresent families, however this is not a problem for our purposes as we are 
not simulating a university or college campus. 
 
for key in DATA: 
    DATA[key] *= 100 / (100 - DATA["other"]) 
 
del DATA["other"] 
 
# Family households 2021 Dataset 
# 
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/families/datasets/familie
sandhouseholdsfamiliesandhouseholds 
# Office for National Statistics - Census 2021 
 
# This data set is used to determine the number of children in a household 
# The data is split into 3 categories: 0 children, 1 child, 2+ children 
# As 0 children is already accounted for in the household data, we will only use the other two 
categories 
# We will assume that single parent households have the same number of children as couple households 
as this is not covered in the data set 
# Out of the 24510 family households with dependent children 
# The number of households with 1-2 children is 19133 
# The number of households with 3+ children is 5377 
 
# We will assume that no households have more than 3 children 
# We will also assume that the number of households with 1 child is the same as the number of 
households with 2 children 
# This is not true, but it is a reasonable assumption for our purposes 
 
# Breaking up the couple family households with dependent children into 1 child and 2+ children 
 
DATA["couple_family_one_child"] = DATA["couple_family_dependent_children"] * (19133 / 2) / (19133 + 
5377) 
DATA["couple_famliy_two_children"] = DATA["couple_family_dependent_children"] * (19133 / 2) / (19133 + 
5377) 
DATA["couple_family_three_children"] = DATA["couple_family_dependent_children"] * 5377 / (19133 + 
5377) 
 
# Then the same for the lone parent 
 
DATA["lone_parent_one_child"] = DATA["lone_parent_dependent_children"] * (19133 / 2) / (19133 + 5377) 
DATA["lone_parent_two_children"] = DATA["lone_parent_dependent_children"] * (19133 / 2) / (19133 + 
5377) 
DATA["lone_parent_three_children"] = DATA["lone_parent_dependent_children"] * 5377 / (19133 + 5377) 
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# We will then assume that households with only non-dependent children only have 1 child 
DATA["couple_family_one_nondependent_child"] = DATA["couple_family_all_nondependent_children"] 
DATA["lone_parent_one_nondependent_child"] = DATA["lone_parent_all_nondependent_children"] 
 

# Finally one_person_other will be simplified to one_person 
DATA["one_person"] = DATA["one_person_other"] 
 
# We will then remove the old categories 
del ( 
    DATA["couple_family_dependent_children"], 
    DATA["couple_family_all_nondependent_children"], 
    DATA["lone_parent_dependent_children"], 
    DATA["lone_parent_all_nondependent_children"], 
    DATA["one_person_other"], 
) 
 
print(DATA) 
# File: project/Population/households.py 
# Results from data_analysis/census/households.py (Appendix 1) 
DATA = { 
    "one_person_aged_66_or_over": 15.504807692307692, 
    "couple_family_no_children": 20.072115384615383, 
    "couple_family_one_child": 8.819506559332142, 
    "couple_famliy_two_children": 8.819506559332142, 
    "couple_family_three_children": 4.9571407274895645, 
    "lone_parent_one_child": 3.2369465563506266, 
    "lone_parent_two_children": 3.2369465563506266, 
    "lone_parent_three_children": 1.8193761180679786, 
    "couple_family_one_nondependent_child": 7.6923076923076925, 
    "lone_parent_one_nondependent_child": 5.048076923076923, 
    "one_person": 20.79326923076923, 
} 
 

def distribute_households(number_of_households): 
    # Distribute the 70 houses across the 7 categories by the value given in DATA 
    housesholds = {} 
 
    for key in DATA: 
        housesholds[key] = int(DATA[key] / 100 * number_of_households) 
 
    # Add the remainder to the category with the highest percentage 
    housesholds[max(housesholds, key=housesholds.get)] += number_of_households - 
sum(housesholds.values()) 
 
    # check if the sum of the values is equal to NUMBER_OF_HOUSEHOLDS 
    assert sum(housesholds.values()) == number_of_households 
 
    return housesholds 

 

Appendix 2 – Age census data analysis [Python 3.10.7] 

# File: project/Population/ages.py 
# Percentages of the popluation of England and Wales for each age. 
# Source of data: 
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/dataset
s/ageingpopulationestimates 
# Office for National Statistics - Census 2021 
# First age is aged under 0, last is those aged 100 and over 
# All data is rounded to the nearest 0.1% 
# The total population of England and Wales recorded in the 2021 Census was 59,597,542 
 
DATA = [1.0, 1.1, 1.1, 1.1, 1.1, 1.2, 1.1, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.2, 1.1, 1.1, 1.1, 1.1, 
1.2, 1.2, 1.2, 1.2, 1.2, 1.3, 1.3, 1.3, 1.3, 1.3, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.3, 1.3, 
1.3, 1.3, 1.3, 1.3, 1.2, 1.2, 1.2, 1.2, 1.3, 1.3, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.3, 
1.3, 1.2, 1.2, 1.2, 1.1, 1.1, 1.0, 1.0, 1.0, 1.0, 0.9, 0.9, 1.0, 1.0, 1.1, 1.0, 0.8, 0.8, 0.7, 0.7, 
0.6, 0.5, 0.6, 0.5, 0.5, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.0, 0.0, 0.0, 
0.0, 0.0] 
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def distribute_ages(population_size): 
    # The population is distributed according to the percentages in DATA 
    ages = [] 
    for age, percentage in enumerate(DATA): 
        ages.extend([age] * round(population_size * percentage / 100)) 
 
    # Add the remainder to the modal age 
    ages.extend([DATA.index(max(DATA))] * (population_size - len(ages))) 
 
    return sorted(ages) 

 

Appendix 3 – Jobs 

# Teachers 
# Source - https://explore-education-statistics.service.gov.uk/find-statistics/school-workforce-in-
england 
# 18.0 students per teacher. We have exactly 36 students in the town, so 2 teachers. 
# Hours - 8:30 to 16:30 
# 2 Teachers 
 
# Retirement Home Staff 
# Source - https://lottie.org/care-guides/the-number-of-uk-care-home-residents/ 
# England - 1.65 staff per resident 
# Wales - 1.24 staff per resident 
# Average weighted for population of England and Wales - About 1.5 staff per resident 
# 10 in the reitrement home, so 15 staff 
# Hours - 8:00 to 16:00 
# 15 Retirement Home Staff 
 
# Bar Staff 
# 3 Workers - 16:00 to 23:00 
 
# Shop Staff 
# 5 Workers - 9:00 to 17:00 
 
# Sports Centre Staff 
# 2 Workers - 8:00 to 16:00 
 
# Restaurant Staff 
# 7 Workers - 11:00 to 20:30 
 
# Theatre Staff 
# Not staffed as shows will be infrequently open 
 
# Club Staff 
# 2 Workers - 20:00 to 02:00 (next day) 
 
# Unemployed 
#https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/timeseries/l
f24/lms - April - June 2020 - 75.7% 
# We will round this to 85% of adults, as this data takes into account 16-17 year olds, who do not 
work in our simulation. 
# 15% of 99 adults ~= 15 adults 
# The remaining 48 adults will be work in workspaces, seperated from the general population. 
 
# Workspace 0 - 6:00 to 14:00  - Construction Site          - 10 adults 
# Workspace 1 - 8:30 to 16:30  - Hi-tech Engineering Office -  3 adults 
# Workspace 2 - 9:00 to 17:00  - Traditional Office Job     - 16 adults 
# Workspace 3 - 9:00 to 18:00  - Administration Job         -  8 adults 
# Workspace 4 - 10:00 to 19:00 - Warehouse                  -  8 adults 
# Workspace 5 - 12:00 to 20:30 - Low interaction work       -  3 adults 

 

Appendix 4 – Model source code link 

In line with AQA EPQ Malpractice regulations, the repository is privated, and inaccessible. 

The code was written without coping or lifting any code from 3Blue1Brown’s code: they are written with slightly different 

libraries, and a full copy of the code can be provided to AQA if needed. 

https://github.com/FinleyCooper/EPQ 

https://github.com/FinleyCooper/EPQ

